Background: IgE-mediated food allergies have been linked to suboptimal naïve CD4 T (nCD4T) cell activation in infancy, underlined by epigenetic and transcriptomic variation. Similar attenuated nCD4T cell activation in adolescents with food allergy have also been reported, but these are yet to be linked to specific epigenetic or transcriptional changes. Methods:We generated genome-wide DNA methylation data in purified nCD4 T cells at quiescence and following activation in a cohort of adolescents (aged 10-15 years old) with peanut allergy (peanut only or peanut + ≥1 additional food allergy) (FA, n = 29), and age-matched non-food allergic controls (NA, n = 18). Additionally, we assessed transcriptome-wide gene expression and cytokine production in these cells following activation. Results:We found widespread changes in DNA methylation in both NA and FA nCD4T cells in response to activation, associated with the T cell receptor signaling pathway.Adolescents with FA exhibit unique DNA methylation signatures at quiescence and post-activation at key genes involved in Th1/Th2 differentiation (RUNX3, RXRA, NFKB1A, IL4R), including a differentially methylated region (DMR) at the TNFRSF6B promoter, linked to Th1 proliferation. Combined analysis of DNA methylation, transcriptomic data and cytokine output in the same samples identified an attenuated interferon response in nCD4T cells from FA individuals following activation, with decreased expression of several interferon genes, including IFNγ and a DMR at a key downstream gene, BST2. Conclusion:We find that attenuated nCD4T cell responses from adolescents with food allergy are associated with specific epigenetic variation, including disruption of interferon responses, indicating dysregulation of key immune pathways that may contribute to a persistent FA phenotype. However, we recognize the small sample size, the study. Further study is required to validate these findings.
Childhood is a critical period of immune development. During this time, na€ ıve CD4 (nCD4) T cells undergo programmed cell differentiation, mediated by epigenetic changes, in response to external stimuli leading to a baseline homeostatic state that may determine lifelong disease risk. However, the ontogeny of epigenetic signatures associated with CD4 T cell activation during key developmental periods are yet to be described. We investigated genomewide DNA methylation (DNAm) changes associated with nCD4 T activation following 72 h culture in media+anti-CD3/CD28 beads in healthy infants (aged 12 months, n = 18) and adolescents (aged 10-15 years, n = 15). We integrated these data with transcriptomic and cytokine profiling from the same samples. nCD4 T cells from both age groups show similar extensive epigenetic reprogramming following activation, with the majority of genes involved in the T cell receptor signaling pathway associated with differential methylation. Additionally, we identified differentially methylated probes showing age-specific responses, that is, responses in only infants or adolescents, including within a cluster of T cell receptor (TCR) genes. These encoded several TCR alpha joining (TRAJ), and TCR alpha variable (TRAV) genes. Cytokine data analysis following stimulation revealed enhanced release of IFN-c, IL-2 and IL-10, in nCD4 T cells from adolescents compared with infants. Overlapping differential methylation and cytokine responses identified four probes potentially underpinning these age-specific responses. We show that DNAm in nCD4T cells in response to activation is dynamic in infancy and adolescence, with additional evidence for age-specific effects potentially driving variation in cytokine responses between these ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.