Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF) superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGF ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGF signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGF ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling. Transforming growth factor beta (TGF)1 superfamily ligands that include the TGF, bone morphogenetic protein (BMP), growth and differentiation factor, and nodal-related families play a pleiotropic role in vertebrate development by influencing cell specification, differentiation, proliferation, patterning, and migration (1, 2). These functions require the tight control of ligand production, ensuring a highly ordered spatiotemporal distribution and specific activation, via receptor complexes, of particular intracellular signaling pathways. The TGF/activin/nodal ligand subfamily contributes to the specification of endoderm and mesoderm in pregastrula embryos and at gastrula stages, to dorsal mesoderm formation and anterior-posterior patterning (3, 4). Later, TGF ligands influence the body axis and patterning of the nervous system (5). BMPs, a second major ligand subfamily, contribute to the ventralization of germ layers in the early embryo and suppress the default neural cell fate of the ectoderm (6). BMPs also participate later in development in the formation and patterning of the neural crest, heart, blood, kidney, limb, muscle, and skeletal system (7).Signal transduction in the BMP subfamily is initiated by ligand binding to a receptor complex composed of two type I and two type II receptors. Three different BMP type I receptors (activin receptor-like kinase ALK2, ALK3, and ALK6) and three BMP type II receptors (BMP type II receptor (BMPRII), activin type IIA receptor (ActRIIA), activin type IIB receptor (ActRIIB)), each with intracellular serine/threonine kinase domains, have been identified (8). Ligand binding induces phosphorylation of the type I receptor by the type II receptor, which leads to phosphorylation of cytoplasmic receptor-activated Smads. The BMP subfamily signals through one set...
Cervical human papillomavirus (HPV) infection may increase HIV risk. Since other genital infections enhance HIV susceptibility by inducing inflammation, we assessed the impact of HPV infection and clearance on genital immunology and the cervico-vaginal microbiome. Genital samples were collected from 65 women for HPV testing, immune studies and microbiota assessment; repeat HPV testing was performed after 6 months. All participants were HIV-uninfected and free of bacterial STIs. Cytobrush-derived T cell and dendritic cell subsets were assessed by multiparameter flow cytometry. Undiluted cervico-vaginal secretions were used to determine cytokine levels by multiplex ELISA, and to assess bacterial community composition and structure by 16S rRNA gene sequence analysis. Neither HPV infection nor clearance were associated with broad differences in cervical T cell subsets or cytokines, although HPV clearance was associated with increased Langerhans cells and HPV infection with elevated IP-10 and MIG. Individuals with HPV more frequently had a high diversity cervico-vaginal microbiome (community state type IV) and were less likely to have an L. gasseri predominant microbiome. In summary, HPV infection and/or subsequent clearance was not associated with inflammation or altered cervical T cell subsets, but associations with increased Langerhans cells and the composition of the vaginal microbiome warrant further exploration.
Excessive signaling from the Wnt pathway is associated with numerous human cancers. Using a high throughput screen designed to detect inhibitors of Wnt/b-catenin signaling, we identified a series of acyl hydrazones that act downstream of the b-catenin destruction complex to inhibit both Wnt-induced and cancerassociated constitutive Wnt signaling via destabilization of b-catenin. We found that these acyl hydrazones bind iron in vitro and in intact cells and that chelating activity is required to abrogate Wnt signaling and block the growth of colorectal cancer cell lines with constitutive Wnt signaling. In addition, we found that multiple iron chelators, desferrioxamine, deferasirox, and ciclopirox olamine similarly blocked Wnt signaling and cell growth. Moreover, in patients with AML administered ciclopirox olamine, we observed decreased expression of the Wnt target gene AXIN2 in leukemic cells. The novel class of acyl hydrazones would thus be prime candidates for further development as chemotherapeutic agents. Taken together, our results reveal a critical requirement for iron in Wnt signaling and they show that iron chelation serves as an effective mechanism to inhibit Wnt signaling in humans. Cancer Res; 71(24); 7628-39. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.