Background The glymphatic pathway transports cerebrospinal fluid through the brain, thereby facilitating waste removal. A unique aspect of this pathway is that its function depends on the state of consciousness of the brain and is associated with norepinephrine activity. A current view is that all anesthetics will increase glymphatic transport by inducing unconsciousness. This view implies that the effect of anesthetics on glymphatic transport should be independent of their mechanism of action, as long as they induce unconsciousness. We tested this hypothesis by comparing the supplementary effect of dexmedetomidine, which lowers norepinephrine, with isoflurane only, which does not. Methods Female rats were anesthetized with either isoflurane (N = 8) or dexmedetomidine plus low-dose isoflurane (N = 8). Physiologic parameters were recorded continuously. Glymphatic transport was quantified by contrast-enhanced magnetic resonance imaging. Cerebrospinal fluid and gray and white matter volumes were quantified from T1 maps, and blood vessel diameters were extracted from time-of-flight magnetic resonance angiograms. Electroencephalograms were recorded in separate groups of rats. Results Glymphatic transport was enhanced by 32% in rats anesthetized with dexmedetomidine plus low-dose isoflurane when compared with isoflurane. In the hippocampus, glymphatic clearance was sixfold more efficient during dexmedetomidine plus low-dose isoflurane anesthesia when compared with isoflurane. The respiratory and blood gas status was comparable in rats anesthetized with the two different anesthesia regimens. In the dexmedetomidine plus low-dose isoflurane rats, spindle oscillations (9 to 15 Hz) could be observed but not in isoflurane anesthetized rats. Conclusions We propose that anesthetics affect the glymphatic pathway transport not simply by inducing unconsciousness but also by additional mechanisms, one of which is the repression of norepinephrine release.
Background There is a paucity of literature regarding the implementation of enhanced recovery after surgery (ERAS) protocols for open lumbar spine fusions. We implemented an ERAS program for 1–2-level lumbar spine fusion surgery and identified areas that might benefit from perioperative interventions to improve patient satisfaction and outcomes. Methods This institutionally approved quality improvement (QI) ERAS program for lumbar spine fusion was designed for all neurosurgical patients 18 years and older scheduled for 1 or 2 level primary lumbar fusions. The ERAS bundle contained elements such as multimodal analgesia including preoperative oral acetaminophen and gabapentin, postoperative early mobilization and physical therapy, and a prophylactic multimodal antiemetic regimen to decrease postoperative nausea and vomiting. No fluid management or hemodynamic parameters were included. Pre-ERAS and post-ERAS data were compared with regard to potential confounders, compliance with the ERAS bundle, and postoperative outcomes. Results A total of 230 patients were included from October 2013 to May 2017. The pre-ERAS phase consisted of 123 patients, 11 patients during the transition period, and 96 serving as post-ERAS patients. The pre-ERAS and post-ERAS groups had comparable demographics and comorbidities. Compliance with preoperative and intraoperative medication interventions was relatively good (~ 80%). Compliance with postoperative elements such as early physical therapy, early mobilization, and early removal of the urinary catheter was poor with no significant improvement in post-ERAS patients. There was no significant change in the amount of short-acting opioids used, but there was a decrease in the use of long-acting opioids in the post-ERAS phase (14.6 to 5.2%, p = 0.025). Post-ERAS patients required fewer rescue antiemetic medications in the recovery room compared to pre-ERAS patients (40 to 24%). There was no significant difference in postoperative pain scores or hospital length of stay between the two groups. Conclusions Implementing an ERAS bundle for 1–2-level lumbar fusion had minimal effect in decreasing length of stay, but a significant decrease in postoperative opioid and rescue antiemetic use. This ERAS bundle showed mixed results likely secondary to poor ERAS protocol compliance. Going forward, this QI project will look to improve post-operative ERAS implementation to improve patient outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.