The aqueous self-assembly of oligopeptide-flanked pi-conjugated molecules into discrete one-dimensional nanostructures is described. Unique to these molecules is the fact that the pi-conjugated unit has been directly embedded within the peptide backbone by way of a synthetic amino acid with pi-functionality that is compatible with standard Fmoc-based peptide synthesis. The peptide-based molecular design enforces intimate pi-pi communication within the aggregate after charge-screening and self-assembly, making these nanostructures attractive for optical or electronic applications in biological environments. The synthesis and assembly are reported along with spectroscopic and morphological characterization of the new nanomaterials.
We report a convenient method to incorporate pi-electron units into peptides that assemble into amyloid-like supramolecular polymers, discussing the scope of the process and preliminary characterization of the resulting nanomaterials. Self-assembly manipulates these "electronic peptides" into delocalized sub-10 nm 1-D nanostructures under completely aqueous conditions.
A facile technique is reported to prepare globally aligned arrays of self‐assembled peptide nanostructures within macroscopic hydrogels starting from a solution of peptide molecules with embedded π‐conjugated oligomers. The alignment of the π‐stacked conduits within these macrostructures is verified with polarized optical microscopy and leads to anisotropic photophysical and electrical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.