Most cancer deaths arise from metastases as a result of circulating tumor cells (CTCs) spreading from the primary tumor to vital organs. Despite progress in cancer prognosis, the role of CTCs in early disease diagnosis is unclear because of the low sensitivity of CTC assays. We demonstrate the high sensitivity of the Cytophone technology using an in vivo photoacoustic flow cytometry platform with a high pulse rate laser and focused ultrasound transducers for label-free detection of melanin-bearing CTCs in patients with melanoma. The transcutaneous delivery of laser pulses via intact skin to a blood vessel results in the generation of acoustic waves from CTCs, which are amplified by vapor nanobubbles around intrinsic melanin nanoclusters. The time-resolved detection of acoustic waves using fast signal processing algorithms makes photoacoustic data tolerant to skin pigmentation and motion. No CTC-associated signals within established thresholds were identified in 19 healthy volunteers, but 27 of 28 patients with melanoma displayed signals consistent with single, clustered, and likely rolling CTCs. The detection limit ranged down to 1 CTC/liter of blood, which is ~1000 times better than in preexisting assays. The Cytophone could detect individual CTCs at a concentration of ≥1 CTC/ml in 20 s and could also identify clots and CTC-clot emboli. The in vivo results were verified with six ex vivo methods. These data suggest the potential of in vivo blood testing with the Cytophone for early melanoma screening, assessment of disease recurrence, and monitoring of the physical destruction of CTCs through real-time CTC counting.
BACKGROUND:Inadequate hydration in the elderly is associated with increased morbidity and mortality. However, few studies have addressed the knowledge of elderly individuals regarding hydration in health and disease. Gaps in health literacy have been identified as a critical component in health maintenance, and promoting health literacy should improve outcomes related to hydration associated illnesses in the elderly.METHODS:We administered an anonymous survey to community-dwelling elderly (n = 170) to gauge their hydration knowledge.RESULTS:About 56% of respondents reported consuming >6 glasses of fluid/day, whereas 9% reported drinking ≤3 glasses. About 60% of respondents overestimated the amount of fluid loss at which moderately severe dehydration symptoms occur, and 60% did not know fever can cause dehydration. Roughly 1/3 were not aware that fluid overload occurs in heart failure (35%) or kidney failure (32%). A majority of respondents were not aware that improper hydration or changes in hydration status can result in confusion, seizures, or death.CONCLUSIONS:Overall, our study demonstrated that there were significant deficiencies in hydration health literacy among elderly. Appropriate education and attention to hydration may improve quality of life, reduce hospitalizations and the economic burden related to hydration-associated morbidity and mortality.
Traditionally, computer science education research contributes new tools, techniques, and theories to improve institutionalized learning spaces -e.g. classrooms. However, we take the position that the study and improvement of computer science learning spaces outside the classroom are just as important.We take a step toward illuminating the critical qualities of noninstitutional computer science learning spaces by engaging in a grounded-theoretical examination of first-hand accounts of noninstitutional learning. To further study the topic, we attempted to recreate (in the lab) a learning environment with many qualities that characterize non-institutional learning.To make this possible, we employed a modified version of CodeSpells -a video game designed to teach Java programming in a way that engenders the sense of sustained, playful, creative exploration driven entirely by the learner. This study introduced 40 girls, ages 10 to 12, to programming for the first time. We use the results of both studies to develop a theoretical framework which we use to examine existing tools such as Scratch, Alice, and educational games in a new light.
BackgroundThe protein p49/STRAP (SRFBP1) is a transcription cofactor of serum response factor (SRF) which regulates cytoskeletal and muscle-specific genes.ResultsTwo conserved domains were found in the p49/STRAP protein. The SRF-binding domain was at its N-terminus and was highly conserved among mammalian species, xenopus and zebrafish. A BUD22 domain was found at its C-terminus in three sequence databases. The BUD22 domain was conserved among mammalian p49/STRAP proteins, and yeast cellular morphogenesis proteins, which is involved in ribosome biogenesis that affects growth rate and cell size. The endogenous p49/SRAP protein was localized mainly in the nucleus but also widely distributed in the cytoplasm, and was in close proximity to the actin. Transfected GFP-p49/STRAP protein co-localized with nucleolin within the nucleolus. Overexpression of p49/STRAP reduced actin content in cultured cells and resulted in smaller cell size versus control cells. Increased expression of p49/STRAP in transgenic mice resulted in newborns with malformations, which included asymmetric abdominal and thoracic cavities, and substantial changes in cardiac morphology. p49/STRAP altered the expression of certain muscle-specific genes, including that of the SRF gene, which is a key regulator of cardiac genes at the developmental, structural and maintenance level and has two SRE binding sites.ConclusionsSince p49/STRAP is a co-factor of SRF, our data suggest that p49/STRAP likely regulates cell size and morphology through SRF target genes. The function of its BUD22 domain warrants further investigation. The observed increase in p49/STRAP expression during cellular aging may contribute to observed morphological changes in senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.