Objective. Macrophage migration inhibitory factor (MIF) isConclusion. These data represent the first demonstration of the cytokine MIF in human autoimmune disease and suggest MIF as a potential therapeutic target in RA.Macrophage migration inhibitory factor (MIF) is increasingly recognized as an important regulator of immune and inflammatory responses. It is released by activated T lymphocytes and macrophages and upregulates the proinflammatory activity of these cells (1-4). While its original description focused on its ability to prevent the random migration of macrophages in culture, evidence of a broad range of proinflammatory actions continues to emerge. Of note, MIF induces macrophage secretion of tumor necrosis factor ␣ (TNF␣) and promotes interferon-␥ (IFN␥)-induced production of nitric oxide by mouse macrophages (5-7).
The typical profile of bronchiectasis in this group of patients was of longstanding productive cough, rhinosinusitis and fatigue in non-smokers with crackles on chest auscultation.
Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis and Goodpasture’s disease, is associated with particular Human Leukocyte Antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigated the molecular mechanism of Goodpasture’s disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4+ T cell self-epitope derived from the α3 chain of Type IV collagen (α3135-145)1–4. While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR152. We show that autoreactive α3135-145-specific T cells expand in patients with Goodpasture’s disease and, in α3135-145-immunized HLA-DR15 transgenic mice, α3135-145-specific T cells infiltrate the kidney and mice develop Goodpasture’s disease. HLA-DR15 and HLA-DR1 exhibited distinct peptide repertoires and binding preferences and presented the α3135-145 epitope in different binding registers. HLA-DR15-α3135-145 tetramer+ T cells in HLA-DR15 transgenic mice exhibit a conventional T cell phenotype (Tconv) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3135-145 tetramer+ T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4+Foxp3+ regulatory T cells (Tregs) expressing tolerogenic cytokines. HLA-DR1-induced Tregs confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15+ and HLA-DR1+ healthy human donors displayed altered α3135-145-specific TCR usage, HLA-DR15-α3135-145 tetramer+ Foxp3− Tconv and HLA-DR1-α3135-145 tetramer+ Foxp3+CD25hiCD127lo Treg dominant phenotypes, and patients with Goodpasture’s disease display a clonally expanded α3135-145-specific CD4+ T cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific Tregs that leads to protection or causation of autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.