The invasive eucalyptus tortoise beetle, Paropsis charybdis, defoliates plantations of Eucalyptus nitens in New Zealand. Recent efforts to identify host specific biological control agents (parasitoids) from Tasmania, Australia, have focused on the larval parasitoid wasp, Eadya paropsidis (Braconidae), first described in 1978. In Tasmania, Eadya has been reared from Paropsisterna agricola (genus abbreviated Pst.), a smaller paropsine that feeds as a larva on juvenile rather than adult foliage of Eucalyptus nitens. To determine which of the many paropsine beetle hosts native to Tasmania are utilized by E. paropsidis, and to rule out the presence of cryptic species, a molecular phylogenetic approach was combined with host data from rearing experiments from multiple locations across six years. Sampling included 188 wasps and 94 beetles for molecular data alone. Two mitochondrial genes (COI and Cytb) and one nuclear gene (28S) were analyzed to assess the species limits in the parasitoid wasps. The mitochondrial genes were congruent in delimiting four separate phylogenetic species, all supported by morphological examinations of Eadya specimens collected throughout Tasmania. Eadya paropsidis was true to the type description, and was almost exclusively associated with P. tasmanica. A new cryptic species similar to E. paropsidis, Eadya sp. 3, was readily reared from Pst. agricola and P. charybdis from all sites and all years. Eadya sp. 3 represents the best candidate for biological control of P. charybdis and was determined as the species undergoing host range testing in New Zealand for its potential as a biological control agent. Another new species, Eadya sp. 1, was morphologically distinctive and attacked multiple hosts. The most common host was Pst. variicollis, but was also reared from Pst. nobilitata and Pst. selmani. Eadya sp. 1 may have potential for control against Pst. variicollis, a new incursion in New Zealand, and possibly Pst. selmani in Ireland. Our molecular data suggests that Pst. variicollis is in need of taxonomic revision and the geographic source of the beetle in New Zealand may not be Tasmania. Eadya sp. 2 was rarely collected and attacked P. aegrota elliotti and P. charybdis. Most species of Eadya present in Tasmania are not host specific to one beetle species alone, but demonstrate some host plasticity across the genera Paropsisterna and Paropsis. This study is an excellent example of collaborative phylogenetic and biological control research prior to the release of prospective biological control agents, and has important implications for the Eucalyptus industry worldwide.
Pollination rates in hybrid carrot crops remain limited after introduction of honey bee hives. In this study, honey bee foraging behaviour was observed in commercial hybrid carrot seed crops. Significantly more visits were made to male-fertile (MF) rather than cytoplasmically male-sterile (CMS) flowers. Pollen was collected from bees returning to a hive, to determine daily variation in pollen loads collected and to what level the bees were foraging for carrot pollen. Honey bees visited a wide range of alternative pollen sources and made relatively few visits to carrot plants throughout the period of flowering. Visitation rates to other individual floral sources fluctuated but visitation to carrot was consistently low. The underlying rate of carrot pollen visits among collecting trips was modelled and estimated to be as low as 1.4%, a likely cause of the limited success implementing honey bee hives in carrot crops.
Measuring individual foraging performance of pollinators is crucial to guide environmental policies that aim at enhancing pollinator health and pollination services. Automated systems have been developed to track the activity of individual honey bees, but their deployment is extremely challenging. This has limited the assessment of individual foraging performance in full‐strength bee colonies in the field. Most studies available to date have been constrained to use downsized bee colonies located in urban and suburban areas. Environmental policy‐making, on the other hand, needs a more comprehensive assessment of honey bee performance in a broader range of environments, including in remote agricultural and wild areas. Here, we detail a new autonomous field method to record high‐quality data on the flight ontogeny and foraging performance of honey bees, using radio frequency identification (RFID). We separate bee traffic into returning and exiting tunnels to improve data quality solving many previous limitations of RFID systems caused by traffic jams and the parasitic coupling of RFID antennae. With this method, we assembled a large RFID dataset made of control bee colonies from experiments conducted in different locations and seasons. We hope our results will be a starting point to understand how ontogenetic and environmental factors affect the individual performance of honey bees and that our method will enable large‐scale replication of individual pollinator performance studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.