Age‐related macular degeneration (AMD), a blinding disorder that compromises central vision, is characterized by the accumulation of extracellular deposits, termed drusen, between the retinal pigmented epithelium and the choroid. Recent studies in this laboratory revealed that vitronectin is a major component of drusen. Because vitronectin is also a constituent of abnormal deposits associated with a variety of diseases, drusen from human donor eyes were examined for compositional similarities with other extracellular disease deposits. Thirty‐four antibodies to 29 different proteins or protein complexes were tested for immunoreactivity with hard and soft drusen phenotypes. These analyses provide a partial profile of the molecular composition of drusen. Serum amyloid P component, apolipoprotein E, immunoglobulin light chains, Factor X, and complement proteins (C5 and C5b‐9 complex) were identified in all drusen phenotypes. Transcripts encoding some of these molecules were also found to be synthesized by the retina, retinal pigmented epithelium, and/or choroid. The compositional similarity between drusen and other disease deposits may be significant in view of the recently established correlation between AMD and atherosclerosis. This study suggests that similar pathways may be involved in the etiologies of AMD and other age‐related diseases.—Mullins, R. F., Russell, S. R., Anderson, D. H., Hageman, G. S. Drusen associated with aging and age‐related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846 (2000)
Objective To evaluate the association of subretinal hyper-reflective material (SHRM) with visual acuity (VA), geographic atrophy (GA) and scar in the Comparison of Age related Macular Degeneration Treatments Trials (CATT) Design Prospective cohort study within a randomized clinical trial. Participants The 1185 participants in CATT. Methods Participants were randomly assigned to ranibizumab or bevacizumab treatment monthly or as-needed. Masked readers graded scar and GA on fundus photography and fluorescein angiography images, SHRM on time domain (TD) and spectral domain (SD) optical coherence tomography (OCT) throughout 104 weeks. Measurements of SHRM height and width in the fovea, within the center 1mm2, or outside the center 1mm2 were obtained on SD-OCT images at 56 (n=76) and 104 (n=66) weeks. VA was measured by certified examiners. Main Outcome Measures SHRM presence, location and size, and associations with VA, scar, and GA. Results Among all CATT participants, the percentage with SHRM at enrollment was 77%, decreasing to 68% at 4 weeks after treatment and 54% at 104 weeks. At 104 weeks, scar was present more often in eyes with persistent SHRM than eyes with SHRM that resolved (64% vs. 31%; p<0.0001). Among eyes with detailed evaluation of SHRM at weeks 56 (n=76) and 104 (n=66), mean [SE] VA letter score was 73.5 [2.8], 73.1 [3.4], 65.3 [3.5], and 63.9 [3.7] when SHRM was absent, present outside the central 1mm2, present within the central 1mm2 but not the foveal center, or present at the foveal center (p=0.02). SHRM was present at the foveal center in 43 (30%), within the central 1mm2 in 21 (15%) and outside the central 1mm2 in 19 (13%). When SHRM was present, the median maximum height in microns under the fovea, within the central 1 mm2 including the fovea and anywhere within the scan was 86; 120; and 122, respectively. VA was decreased with greater SHRM height and width (p<0.05). Conclusions SHRM is common in eyes with NVAMD and often persists after anti-VEGF treatment. At 2 years, eyes with scar were more likely to have SHRM than other eyes. Greater SHRM height and width were associated with worse VA. SHRM is an important morphological biomarker in eyes with NVAMD.
Age-related macular degeneration (AMD) leads to dysfunction and degeneration of retinal photoreceptor cells. This disease is characterized, in part, by the development of extracellular deposits called drusen. The presence of drusen is correlated with the development of AMD, although little is known about drusen composition or biogenesis. Drusen form within Bruch's membrane, a stratified extracellular matrix situated between the retinal pigmented epithelium and choriocapillaris. Because of this association, we sought to determine whether drusen contain known extracellular matrix constituents. Antibodies directed against a battery of extracellular matrix molecules were screened on drusen-containing sections from human donor eyes, including donors with clinically documented AMD. Antibodies directed against vitronectin, a plasma protein and extracellular matrix component, exhibit intense and consistent reactivity with drusen; antibodies to the conformationally distinct, heparin binding form of human vitronectin are similarly immunoreactive. No differences in vitronectin immunoreactivity between hard and soft drusen, or between macular and extramacular regions, have been observed. RT-PCR analyses revealed that vitronectin mRNA is expressed in the retinal pigmented epithelium (RPE)-choroidal complex and cultured RPE cells. These data document that vitronectin is a major constituent of human ocular drusen and that vitronectin mRNA is synthesized locally. Based on these data, we propose that vitronectin may participate in the pathogenesis of AMD.
Large-scale proteomics will play a critical role in the rapid display, identification and validation of new protein targets, and elucidation of the underlying molecular events that are associated with disease development, progression and severity. However, because the proteome of most organisms are significantly more complex than the genome, the comprehensive analysis of protein expression changes will require an analytical effort beyond the capacity of standard laboratory equipment. We describe the first high-throughput proteomic analysis of human breast infiltrating ductal carcinoma (IDCA) using OCT (optimal cutting temperature) embedded biopsies, two-dimensional difference gel electrophoresis (2-D DIGE) technology and a fully automated spot handling workstation. Total proteins from four breast IDCAs (Stage I, IIA, IIB and IIIA) were individually compared to protein from non-neoplastic tissue obtained from a female donor with no personal or family history of breast cancer. We detected differences in protein abundance that ranged from 14.8% in stage I IDCA versus normal, to 30.6% in stage IIB IDCA versus normal. A total of 524 proteins that showed > or = three-fold difference in abundance between IDCA and normal tissue were picked, processed and identified by mass spectrometry. Out of the proteins picked, approximately 80% were unambiguously assigned identities by matrix-assisted laser desorbtion/ionization-time of flight mass spectrometry or liquid chromatography-tandem mass spectrometry in the first pass. Bioinformatics tools were also used to mine databases to determine if the identified proteins are involved in important pathways and/or interact with other proteins. Gelsolin, vinculin, lumican, alpha-1-antitrypsin, heat shock protein-60, cytokeratin-18, transferrin, enolase-1 and beta-actin, showed differential abundance between IDCA and normal tissue, but the trend was not consistent in all samples. Out of the proteins with database hits, only heat shock protein-70 (more abundant) and peroxiredoxin-2 (less abundant) displayed the same trend in all the IDCAs examined. This preliminary study demonstrates quantitative and qualitative differences in protein abundance between breast IDCAs and reveals 2-D DIGE portraits that may be a reflection of the histological and pathological status of breast IDCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.