We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitationalwave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600−3053 and J1918−0642, implying pulsar and companion masses m p = 1.22 +0.5 −0.35 M ⊙ , m c = 0.21 +0.06 −0.04 M ⊙ and m p = 1.25 +0.6 −0.4 M ⊙ , m c = 0.23 +0.07 −0.05 M ⊙ , respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909−3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600−3053 and J1909−3744.
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr −1 ) for a GWB from supermassive black hole binaries of <´-A 1.5 10 gw 15 . We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, W <´-f h 4.2 10 gw 2 1 0 ( ) . Our limit on the cosmic string GWB, W <´-f h 2.2 10 gw 2 1 0 ( ) , translates to a conservative limit on the cosmic string tension with m <´-G 3.3 10 8 , a factor of four better than the joint Planck and high-lcosmic microwave background data from other experiments.
We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterize the polarization of the cosmic microwave background. In contrast to standard analyses, this approach makes no assumptions about the nature of the background and so has the potential to reveal much more about the physical processes that generated it. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction functions for the individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic, unpolarized and uncorrelated background can be accurately represented using only three modes, and so a search of this type will be only slightly more complicated than the standard cross-correlation search using the Hellings and Downs overlap reduction function. However, by measuring the components of individual modes of the background and checking for consistency with isotropy, this approach has the potential to reveal much more information. Each individual mode on its own describes a background that is correlated between different points on the sky. A measurement of the components that indicates the presence of correlations in the background on large angular scales would suggest startling new physics.
We explore the prospects for constraining cosmology using gravitational-wave (GW) observations of neutron star binaries by the proposed Einstein Telescope (ET), exploiting the narrowness of the neutron star mass function. This builds on our previous work in the context of advanced-era GW detectors. Double neutron-star (DNS) binaries are expected to be one of the first sources detected after "first-light" of Advanced LIGO. DNS systems are expected to be detected at a rate of a few tens per year in the advanced era but the proposed Einstein Telescope (ET) could catalog tens, if not hundreds, of thousands per year. Combining the measured source redshift distributions with GW-network distance determinations will permit not only the precision measurement of background cosmological parameters, but will provide an insight into the astrophysical properties of these DNS systems. Of particular interest will be to probe the distribution of delay times between DNSbinary creation and subsequent merger, as well as the evolution of the star-formation rate density within ET's detection horizon. Keeping H0, Ωm,0 and ΩΛ,0 fixed and investigating the precision with which the dark-energy equation-of-state parameters could be recovered, we found that with 10 5 detected DNS binaries we could constrain these parameters to an accuracy similar to forecasted constraints from future CMB+BAO+SNIa measurements. Furthermore, modeling the merger delaytime distribution as a power-law (∝ t α ) and the star-formation rate (SFR) density as a parametrized version of the Porciani and Madau SF2 model, we find that the associated astrophysical parameters are constrained to within ∼ 10%. All parameter precisions scaled as 1/ √ N , where N is the number of cataloged detections. We also investigated how parameter precisions varied with the intrinsic underlying properties of the Universe and with the distance reach of the network (which is affected, for instance, by the low-frequency cutoff of the detector). We also consider various sources of distance measurement errors in the third-generation era, and how these can be folded into the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.