A preliminary study of a promising bi-layer environmental barrier coating (EBC) designed to reduce the susceptibility of SiC composites to hot water vapor erosion is reported. The EBC system consisted of a silicon bond coat and a pore-free ytterbium disilicate (YbDS; Yb 2 Si 2 O 7 ) topcoat. Both layers were deposited on -SiC substrates using a recently optimized air plasma spray method. The two layers of the coating system had coefficients of thermal expansion (CTE) that were well matched to that of the substrate, while the YbDS has been reported to have a moderate resistance to silicon hydroxide vapor forming reactions in water vapor rich environments. Thermal cycling experiments were conducted between 110 °C and 1316 °C in a flowing 90 % H 2 O/10 % O 2 atmospheric pressure environment, and resulted in the formation of a thermally grown (silica) oxide (TGO) at the silicon-ytterbium disilicate interface. The TGO layer exhibited linear oxidation kinetics consistent with oxidizer diffusion through the ytterbium silicate layer controlling its thickening rate. The effective diffusion coefficient of the oxidizing species in the YbDS layer was estimated to be 2x10 -12 m 2 s -1 at 1316 o C. Slow steam volatilization of the YbDS topcoat resulted in the formation of a thin, partially protective, high CTE ytterbium monosilicate layer on the outside of the YbDS coating. Progressive edge delamination of the coating system was observed with steam exposure time, consistent with water vapor volatilization of the TGO edges that were directly exposed to the environment. This was aided by outward bending of the delaminated region to relax TGO and YbMS surface layer stresses developed during the cooling phase of each thermal cycle.
This paper analyzes the competition between kink nucleation and interface fracture for an interface crack (without a putative kink flaw) subject to mixed-mode loading. The simulations utilize a distributed cohesive zone approach that embeds cohesive elements throughout the entire mesh; dynamic crack path evolution occurs through a loss of cohesive traction associated with a critical separation between elements. The simulations identify mesh densities that lead to mesh-independent results for randomly oriented triangular meshes, and provide clear guidelines regarding parameters that recover toughness-controlled cracking (i.e. linear elastic fracture mechanics). The results demonstrate that, when the when the normalized bulk toughness is far from the transition between kinking and delamination, crack direction and critical loads are identical to those predicted by He and Hutchinson, who analyzed cracking from a putative flaw associated with the maximum energy release rate. Near the transition between fracture modes, kink nucleation depends on the relative size of the interface and bulk process zones, such that additional criteria are needed (beyond those postulated by He and Hutchinson). Regime maps are presented which indicate regions of kink nucleation versus delamination as a function of controlling cohesive parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.