Real-time monitoring of river water quality is at the forefront of a proactive urban water management strategy to meet the global challenge of vital freshwater resource sustainability. The concentration of dissolved oxygen (DO) is a primary indicator of the health state of the aquatic habitats, and its modeling is crucial for river water quality management. This paper investigates the importance of the choices of different techniques for preprocessing and stochastic modeling for developing a simple and reliable linear stochastic model for forecasting DO in urban rivers. We describe several methods of evaluation, preprocessing, and modeling for the DO parameter time series in the Credit River, Ontario, Canada, to achieve the optimum data preprocessing and input selection techniques and consequently obtain the optimum performance of the stochastic models as an effective river management tool. The Manly normalization and standardization (Std) methods were chosen for preprocessing the time series. Modeling the preprocessed time series using the stochastic autoregressive integrated moving average (ARIMA) model resulted in very accurate forecasts with a negligible difference from sole normalization and spectral analysis (Sf) methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.