Portable mass spectrometers (MS) are becoming more prevalent due to improved instrumentation, commercialization, and the robustness of new ionization methodologies. To increase utility towards diverse field-based applications, there is an inherent need for rugged ionization source platforms that are simple, yet robust towards analytical scenarios that may arise. Ambient ionization methodologies have evolved to target specific real-world problems and fulfill requirements of the analysis at hand. Ambient ionization techniques continue to advance towards higher performance, with specific sources showing variable proficiency depending on application area. To realize the full potential and applicability of ambient ionization methods, a selection of sources may be more prudent, showing a need for a low-cost, flexible ionization source platform. This manuscript describes a centralized system that was developed for portable MS systems that incorporates modular, rapidly-interchangeable ionization sources comprised of low-cost, commercially-available parts. Herein, design considerations are reported for a suite of ambient ionization sources that can be crafted with minimal machining or customization. Representative spectral data is included to demonstrate applicability towards field processing of forensic evidence. While this platform is demonstrated on portable instrumentation, retrofitting to lab-scale MS systems is anticipated.
Advances in chemical sampling using miniature mass spectrometer technology are used to monitor slow reactions at a frequency of ca. 180 h (on the Mini 12) with no sample carryover and with inline derivatization in the case of poorly ionizing compounds. Moreover, we demonstrate high reproducibility with a relative error of less than 10% for major components. Monitoring is enabled using a continuous-flow nanoelectrospray (CF-nESI) probe contained in a custom-built 3D-printed rotary holder. The holder position is automatically set using a stepper motor controlled by a microcontroller. Reaction progress of up to six reactions, including hydrazone formation and Katritzky transamination, can be monitored simultaneously without carryover for several hours.
Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract .
Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C-C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.