Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels Ϸ2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR ؊/؊ mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.antibody ͉ LDL-C ͉ LDLR ͉ PCSK9 ͉ hypercholesterolemia P roprotein convertase subtilisin/kexin type 9 (PCSK9) has been implicated as an important regulator of LDL metabolism (1, 2). Human genetic studies provide strong validation for the role of PCSK9 in modulating LDL cholesterol (LDL-C) levels and the incidence of coronary heart disease (CHD) in man. Gain-of-function (GOF) mutations in the PCSK9 gene are associated with elevated serum LDL-C levels (Ͼ300 mg/dL) and premature CHD (3), whereas loss-of-function (LOF) mutations are associated with low serum LDL-C (Յ100 mg/dL) (4). Strikingly, subjects harboring the heterozygous LOF mutations exhibited an 88% reduction in the incidence of CHD over a 15-year period relative to noncarriers of the mutations (5). Moreover, despite a complete loss of PCSK9 and serum LDL-C of Ͻ20 mg/dL, the 2 subjects carrying compound heterozygote LOF mutations appear healthy (6, 7).PCSK9 belongs to the subtilisin family of serine proteases and consists of a prodomain, catalytic domain, and C-terminal V domain (8). Expressed highly in the liver, PCSK9 is secreted after autocatalytic cleavage of its zymogen form (1). The prodomain remains noncovalently associated with the catalytic domain and seems to inhibit further proteolytic enzyme activity (8, 9). Secreted PCSK9 modulates LDL-C levels by posttranslational downregulation of hepatic LDL receptor (LDLR) protein (1). The precise mechanism is unknown, but a direct interaction between repeat A of the LDLR EGF homology domain and the PCSK9 catalytic domain is required (10, 11). Proteolytic cleavage of the LDLR by PCSK9 does not occur (12, 13); rather, the PCSK9:LDLR complex is endocytosed and directed to the endosome/lysosome compartment for degradation (14, 15). Current understanding of the LDLR pathway asserts that apolipoprotein B (apoB) and E (apoE) containing lipoprotein particles endocytosed with the LDLR are transported to the acidic environment of the endosome, where they dissociate from the receptor and are subsequently catabolized in lysosomes, while t...
Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for drug discovery. Here, we present the crystal structures of human SphK1 in the apo form and in complexes with a substrate sphingosine-like lipid, ADP, and an inhibitor at 2.0-2.3 Å resolution. The SphK1 structures reveal a two-domain architecture in which its catalytic site is located in the cleft between the two domains and a hydrophobic lipid-binding pocket is buried in the C-terminal domain. Comparative analysis of these structures with mutagenesis and kinetic studies provides insight into how SphK1 recognizes the lipid substrate and catalyzes ATP-dependent phosphorylation.
Proprotein convertase subtilisin kexin type 9 (PCSK9) has been shown to be involved in the regulation of extracellular levels of the low-density lipoprotien receptor (LDLR). Although PCSK9 is a subtilase, it has not been shown to degrade the LDLR, and its LDLR-lowering mechanism remains uncertain. Here we report the crystal structure of human PCSK9 at 2.3 A resolution. PCSK9 has subtilisin-like pro- and catalytic domains, and the stable interaction between these domains prevents access to PCSK9's catalytic site. The C-terminal domain of PCSK9 has a novel protein fold and may mediate protein-protein interactions. The structure of PCSK9 provides insight into its biochemical characteristics and biological function.
Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) has been identified in multiple genome-wide association studies (GWAS) as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). On the basis of this genetic evidence, we developed anti-GIPR antagonistic antibodies as a potential therapeutic strategy for the treatment of obesity and observed that a mouse anti-murine GIPR antibody (muGIPR-Ab) protected against body weight gain, improved multiple metabolic parameters, and was associated with reduced food intake and resting respiratory exchange ratio (RER) in DIO mice. We replicated these results in obese nonhuman primates (NHPs) using an anti-human GIPR antibody (hGIPR-Ab) and found that weight loss was more pronounced than in mice. In addition, we observed enhanced weight loss in DIO mice and NHPs when anti-GIPR antibodies were codosed with glucagon-like peptide-1 receptor (GLP-1R) agonists. Mechanistic and crystallographic studies demonstrated that hGIPR-Ab displaced GIP and bound to GIPR using the same conserved hydrophobic residues as GIP. Further, using a conditional knockout mouse model, we excluded the role of GIPR in pancreatic β-cells in the regulation of body weight and response to GIPR antagonism. In conclusion, these data provide preclinical validation of a therapeutic approach to treat obesity with anti-GIPR antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.