The non-functional form of xanthine oxidase known as the desulpho enzyme was compared with the functional enzyme in various ways, to obtain information on the structure of the molybdenum centre and the mechanism of the catalytic reaction. The desulpho enzyme, like the functional one, possesses a site for the binding of anions, presumably as ligands of molybdenum. Evidence is presented that in the Mo(V) e.p.r. signal from the desulpho-enzyme, as in that from the functional enzyme, a weakly coupled proton, in addition to a strongly coupled proton, interacts with the metal. Measurements were carried out by e.p.r. on the rate at which the proton strongly coupled to molybdenum exchanged, on diluting enzyme samples with 2H2O. For the desulpho enzyme the exchange rate constant was 0.40s-1, at pH 8.2 and 12 degrees C, and for the functional enzyme it was 85 s-1. It is shown that the great majority of reported differences between the enzyme forms are consistent with functional enzyme containing an (Enzyme)-Mo=S grouping, replaced in the desulpho form by (Enzyme)-Mo=O. Protonation of these groups, with pK values of about 8 and 10 respectively, would give (Enzyme)-Mo-SH and (Enzyme)-Mo-OH, these being the forms observed by e.p.r. The accepting group in the functional enzyme, for the proton transferred from the substrate while molybdenum is reduced in the catalytic reaction [Gutteridge, Tanner & Bray (1978) Biochem J. 175 869-878], is thus taken to be Mo=S.
The observation by Bray & Knowles [Proc. R. Soc. London Ser. A (1968) 302, 351--353] of direct transfer, during the catalytic reaction, of hydrogen atoms from substrate molecules to the enzyme xanthine oxidase was reinvestigated. The experimental phenomenon and its basic interpretation were confirmed and extended. In the reduced functional enzyme, molybdenum(V) interacts with two enzyme-bound protons, which are exchangeable with solvent protons. One of these is coupled to the metal with AHav. 1.4mT and the other with AHav. 0.3mT. The molecule also contains a site for the binding of anions, presumably as ligands of molybdenum. This is shown by effects of nitrate ions on the e.p.r. spectra. The spectra of the nitrate and 1-methylxanthine complexes of the reduced enzyme are very similar to one another, and are designated Rapid type-1 spectra. It is concluded that, in the Michaelis complex, the substrate molecule occupies the anion site, probably being bound to molybdenum via the nitrogen in its 9-position. During the turnover process, hydrogen from the substrate C-8 position, after transfer to the enzyme, appears as the proton more strongly coupled to molybdenum. This proton then exchanges with solvent deuterium with a rate constant of 27s-1, at pH 8.2 and 12 degrees C. It has been confirmed that substrate molecules occupying the anion site do not interfere with observation of the transfer and exchange processes.
On the basis of the work of Gutteridge, Tanner & Bray [Biochem. J. (1978) 175, 887-897] and of other data in the literature, a mechanism for the reaction of xanthine oxidase with reducing substrates is proposed. In the Michaelis complex, xanthine is bound to molybdenum via the N-9 nitrogen atom. Coupled transfer of two electrons to molybdenum and the C-8 proton to the enzyme yields (Enzyme)-Mo-SH. Concerted with this process, reaction of the xanthine residue with a nucleophile in the active centre yields a covalent intermediate that breaks down to give the product by alternative pathways at high and at low pH values.
Xanthine oxidase is stable and active in aqueous dimethyl sulphoxide solutions of up to at least 57% (w/w). Simple techniques are described for mixing the enzyme in this solvent at--82 degrees C, with its substrate, xanthine. When working at high pH values under such conditions, no reaction occurred, as judged by the absence of e.p.r. signals. On warming to--60 degrees C, for 10 min, however, the Very Rapid molybdenum(V) e.p.r. signal was obtained. This signal did not change on decreasing the pH, while maintaining the sample in liquid nitrate reductase, caused its molybdenum(V) e.p.r. signal to change from the high-pH to the low-pH form. These findings are not compatible with the conclusions of Edmondson, Ballou, Van Heuvelen, Palmer & Massey [J. Biol. Chem. (1973) 248, 6135-6144], that the Very Rapid signal is in prototropic equilibrium with the Rapid signal, and should be important in understanding the mechanism of action of the enzyme. They emphasize the unique nature of the intermediate represented by the Very Rapid e.p.r. signal. The possible value of the pK for loss of an exchangeable proton from the Rapid signal is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.