A broad drug screening method for toxicologically significant drugs and metabolites in whole blood using liquid chromatography time-of-flight mass spectrometry (LC/QTOF) was developed and comprehensively validated. The method qualitatively screens for 320 compounds while simultaneously quantifying 39. Compounds were extracted from the blood using alkaline liquid/liquid extraction and chromatographic separation was achieved in 12 min. The QTOF was operated using positive mode electrospray ionization using data dependent acquisition. Qualitative validation was performed for all 320 compounds, and included selectivity, recovery, limit of detection, matrix effects, carryover and extract stability. The limits of detection were in the low to sub ng/mL range for the majority of compounds. Full quantitative validation was performed for 39 compounds and accuracy and precision were within 15 and 18%, respectively. The qualitative data processing method uses an in-house retention time, accurate mass and MSMS spectral database, which can be easily updated with new compounds of interest as they emerge onto the market, without affecting method performance. The use of a non-targeted data acquisition method coupled with targeted data processing has proven to be a highly versatile, efficient and robust approach to screening, well suited to meet the needs of the modern toxicology laboratory involved in systematic toxicological analysis.
The number of new psychoactive substances (NPS) available is constantly increasing, making it difficult for toxicology laboratories to keep screening methods up to date. Full scan high-resolution mass spectrometry (HRMS) is a versatile technique which allows for progressive updating of spectral databases to increase the scope of screening. It also allows for retrospective screening of data-specifically, reprocessing of data files using an updated spectral database without the need for re-extraction or reanalysis.The coronial case reported here illustrates the application of retrospective processing of HRMS data in the detection of emerging NPS. A 28-year-old male with a history of illicit drug use was found deceased at home. Initial routine screening of the post-mortem peripheral blood identified only methylamphetamine, amphetamine and trace amounts of lorazepam. A compound with an accurate mass and isotope ratio consistent with the opioid AH-7921 was also detected in the liquid chromatography (LC)-HRMS screen; however; the retention time and mass spectrum did not match the library. Further investigation confirmed the compound to be U-47700, another opioid and structural isomer of AH-7921. Several months later, after additional NPS had been added to the in-house HRMS database, retrospective screening of the HRMS data was performed, revealing the presence of designer benzodiazepines, diclazepam and flubromazepam as well as the psychedelic drug 2,5-dimethoxy-4-chloroamphetamine (DOC). Quantitative analysis gave the following results in peripheral post-mortem blood: U-47700 (330 μg/L), diclazepam (70 μg/L), flubromazepam (10 μg/L), methylamphetamine (290 μg/L) and amphetamine (150 μg/L) (DOC not quantitated). These substances, along with lorazepam and etizolam, were also confirmed in the post-mortem urine and an investigation into blood and urinary metabolites was carried out. All analyses were performed using the same LC-quadrupole-time of flight method. The cause of death was aspiration (of gastric content into airways and lungs) due to mixed drug toxicity.
Liquid chromatography-mass spectrometry (LC-MS) has quickly become the analytical method of choice in forensic toxicology laboratories due to its ability to detect a very wide range of compounds in a single analysis. One of the major limitations of LC-MS however, is a relatively limited linear dynamic range for quantitation. A new approach to combating this problem is to use the [ M + H] isotope mass peak for quantitation, thereby reducing saturation at the detector and extending the linear range. This is particularly useful in full-scan applications, such as quadrupole-time-of-flight (QTOF) mass spectrometry, where the isotopic mass peaks are acquired as a matter of course. Due to the variation in abundance of naturally occurring isotopes for common elements, especially C, this technique has the potential to lead to additional quantitative error. Through a review of published isotope ratio mass spectrometry data, we have assessed this potential for error and found that it is likely to be less than 2% and unlikely to be more than 4%, although this may not apply to compounds containing high numbers of nitrogen or sulphur atoms. This additional potential error must be considered before using this technique as it may not be appropriate for all applications. We have deemed it fit for purpose for our application and demonstrate the applicability of this technique to a quantitative LC-TOF method. © 2017 Commonwealth of Australia. Drug Testing and Analysis © 2017 John Wiley& Sons, Ltd.
Consumption of new psychoactive substances (NPS) is an international problem for health, policing, forensic, and analytical laboratories. The transience of these substances in the community, combined with continual slight structural changes to evade legislation makes the elucidation of NPS an analytical challenge. This is amplified in a matrix as complex as wastewater. For that reason, suspect and non-target methodologies, employing high resolution mass spectrometry are the most appropriate current tool to facilitate the identification of new and existing compounds. In the current work, a qualitative screening method of influent wastewater using liquid chromatography-high resolution mass spectrometry showed a strong signal at m/z 192.1382identical to that of two NPS standards that were in our method (pentedrone and 4-methylethcathinone), and with identical fragment ions, but the retention times did not match. This work shows the methodology followed to identify this compound, highlighting the challenges of the identifying "new" compounds in influent wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.