What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backwards compatibility. And indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities and unprecedented numbers of antennas. But unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract-This paper presents an overview of the theory and currently known techniques for multi-cell MIMO (multiple input multiple output) cooperation in wireless networks. In dense networks where interference emerges as the key capacitylimiting factor, multi-cell cooperation can dramatically improve the system performance. Remarkably, such techniques literally exploit inter-cell interference by allowing the user data to be jointly processed by several interfering base stations, thus mimicking the benefits of a large virtual MIMO array. Multicell MIMO cooperation concepts are examined from different perspectives, including an examination of the fundamental information-theoretic limits, a review of the coding and signal processing algorithmic developments, and, going beyond that, consideration of very practical issues related to scalability and system-level integration. A few promising and quite fundamental research avenues are also suggested.
Multiuser receivers improve the performance of spread-spectrum and antenna-array systems by exploiting the structure of the multiaccess interference when demodulating the signal of a user. Much of the previous work on the performance analysis of multiuser receivers has focused on their ability to reject worst case interference. Their performance in a powercontrolled network and the resulting user capacity are less wellunderstood. In this paper, we show that in a large system with each user using random spreading sequences, the limiting interference effects under several linear multiuser receivers can be decoupled, such that each interferer can be ascribed a level of effective interference that it provides to the user to be demodulated. Applying these results to the uplink of a single power-controlled cell, we derive an effective bandwidth characterization of the user capacity: the signal-to-interference requirements of all the users can be met if and only if the sum of the effective bandwidths of the users is less than the total number of degrees of freedom in the system. The effective bandwidth of a user depends only on its own SIR requirement, and simple expressions are derived for three linear receivers: the conventional matched filter, the decorrelator, and the MMSE receiver. The effective bandwidths under the three receivers serve as a basis for performance comparison.
In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the time-varying nature of the environment. In this two-part paper, we consider the problem of optimal resource allocation from an information-theoretic point of view. We focus on the multiaccess fading channel with Gaussian noise, and define two notions of capacity depending on whether the traffic is delay-sensitive or not. In part I, we characterize the throughput capacity region which contains the long-term achievable rates through the time-varying channel. We show that each point on the boundary of the region can be achieved by successive decoding. Moreover, the optimal rate and power allocations in each fading state can be explicitly obtained in a greedy manner. The solution can be viewed as the generalization of the water-filling construction for single-user channels to multiaccess channels with arbitrary number of users, and exploits the underlying polymatroid structure of the capacity region. In part II, we characterize a delay-limited capacity region and obtain analogous results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.