ObjectiveHome dampness and the presence of mold and allergens have been associated with asthma morbidity. We examined changes in asthma morbidity in children as a result of home remediation aimed at moisture sources.DesignIn this prospective, randomized controlled trial, symptomatic, asthmatic children (n = 62), 2–17 years of age, living in a home with indoor mold, received an asthma intervention including an action plan, education, and individualized problem solving. The remediation group also received household repairs, including reduction of water infiltration, removal of water-damaged building materials, and heating/ventilation/air-conditioning alterations. The control group received only home cleaning information. We measured children’s total and allergen-specific serum immuno-globulin E, peripheral blood eosinophil counts, and urinary cotinine. Environmental dust samples were analyzed for dust mite, cockroach, rodent urinary protein, endotoxin, and fungi. The follow-up period was 1 year.ResultsChildren in both groups showed improvement in asthma symptomatic days during the preremediation portion of the study. The remediation group had a significant decrease in symptom days (p = 0.003, as randomized; p = 0.004, intent to treat) after remodeling, whereas these parameters in the control group did not significantly change. In the postremediation period, the remediation group had a lower rate of exacerbations compared with control asthmatics (as treated: 1 of 29 vs. 11 of 33, respectively, p = 0. 003; intent to treat: 28.1% and 10.0%, respectively, p = 0.11).ConclusionConstruction remediation aimed at the root cause of moisture sources and combined with a medical/behavioral intervention significantly reduces symptom days and health care use for asthmatic children who live in homes with a documented mold problem.
Quantitative PCR (QPCR) technology, incorporating fluorigenic 5 nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.Yeasts are a significant component of the microbiota of most natural aquatic ecosystems (17, 33) and can also occur in drinking water distribution systems as a result of their ability to survive treatment practices and become incorporated into biofilms (6,12,22,30,31). The majority of these organisms have no known human health effect. However, a small number of species, primarily within the anamorphic genus Candida, are important opportunistic pathogens (23).The importance of pathogenic Candida as agents of nosocomial infections has led to the development of a number of modern molecular diagnostic methods to facilitate their detection and identification in clinical samples. Methods based on the PCR and DNA hybridization probes have received particular attention (9,25,26,32,39). The more recent advent of fluorescent probe-based PCR technology (21) has led to the development of homogeneous methods for detecting these organisms that require relatively short periods of time to perform (16,28).Quantitative PCR (QPCR) has been demonstrated to be useful for quantitative analysis of microorganisms in environmental samples (29,34,35,36), but, to our knowledge, this approach has not been used in the analysis of yeasts in water. Analyses for pathogenic yeasts in drinking or recreational water systems have the potential to expedite the identification of possible health hazards resulting either directly from the presence of these organisms or, as their presence might indicate, indirectly from other waterborne pathogens.The first object...
Background The specific cause(s) of asthma development must be identified in order to prevent this disease. Objective Our hypothesis was that specific mold exposures are associated with childhood asthma development. Methods Infants were identified from birth certificates. Dust samples were collected from 289 homes when the infants were age eight months. Samples were analyzed for concentrations of 36 molds that comprise the Environmental Relative Moldiness Index (ERMI) and endotoxin, house dust mite, cat, dog, and cockroach allergens. Children were evaluated at age seven for asthma based on reported symptoms and objective measures of lung function. Host, environmental exposures and home characteristics evaluated included history of parental asthma, race, gender, upper and lower respiratory symptoms, season of birth, family income, cigarette smoke exposure, air conditioning, dehumidifier, carpeting, age of home, and visible mold at age one and child positive skin prick test (SPT) to aeroallergens and molds at age seven. Results Asthma was diagnosed in 24% of the children at age seven. A statistically significant increase in asthma risk at age seven was associated with high ERMI levels in the child’s home in infancy (adjusted risk ratio (aRR) for a 10-unit increase in ERMI = 1.8, 95% CI=1.5, 2.2). The summation of levels of three mold species, Aspergillus ochraceus, Aspergillus unguis, and Penicillium variabile was significantly associated with asthma (aRR = 2.2, 95% CI=1.8, 2.7). Conclusion In this birth cohort study, exposure during infancy to three mold species common to water-damaged buildings was associated with childhood asthma at age seven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.