The goal of this research is to increase the bandwidth (BW) over which substantial energy can be harvested using a piezoelectric energy harvester (PEH). The key innovation is the use of bias-flip (BF) electronics at the output of a PEH having a large electromechanical coupling coefficient κ 2 e . For a PEH with large κ 2 e , the open-circuit resonance frequency foc is substantially larger than the short-circuit resonance frequency fsc. Over the intervening range, the reactive part of the conjugate matched load impedance is small, and can be approximated using BF electronics in which the BF voltage is sufficiently small and the BF losses are small. This results in a large BW over which substantial energy can be harvested. Experimental results using a commercially available PEH are presented to demonstrate this concept. Design guidelines are provided for achieving PEHs having increased κ 2 e .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.