We develop a new system for studying how innate drives are tuned to reflect current physiological needs and capacities, and how they affect sensory-motor processing. We demonstrate the existence of male mating drive in Drosophila, which is transiently and cumulatively reduced as reproductive capacity is depleted by copulations. Dopaminergic activity in the anterior of the superior medial protocerebrum (SMPa) is also transiently and cumulatively reduced in response to matings and serves as a functional neuronal correlate of mating drive. The dopamine signal is transmitted through the D1-like DopR2 receptor to P1 neurons, which also integrate sensory information relevant to the perception of females, and which project to courtship motor centers that initiate and maintain courtship behavior. Mating drive therefore converges with sensory information from the female at the point of transition to motor output, controlling the propensity of a sensory percept to trigger goal-directed behavior.
Our results provide an entry point to the neural circuit controlling virgin female receptivity. The female integrates multiple sensory cues from the male to execute discrete motor programs prior to copulation. Abd-B neurons control pausing, a key aspect of female sexual receptivity, in response to male courtship.
Highlights d Copulation reporting neurons in male Drosophila detect matings and induce satiety d A recurrent excitation loop promotes recovery from satiety over days d Loop activity uses CREB to transcribe the inhibitory channel subunit TASK7 d Prior motivation generates the inhibitory environment that sustains satiety
We reveal a central role for chance neuronal events in the decision of a male fly to court, which can be modeled as a coin flip with odds set by motivational state. The decision is prompted by a tap of a female with the male's pheromone-receptor-containing foreleg. Each tap evokes competing excitation and inhibition onto P1 courtship command neurons. A motivating dopamine signal desensitizes P1 to the inhibition, increasing the fraction of taps that successfully initiate courtship. Once courtship has begun, the same dopamine tone potentiates recurrent excitation of P1, maintaining the courtship of highly motivated males for minutes and buffering against termination. Receptor diversity within P1 creates separate channels for tuning the propensities to initiate and sustain courtship toward appropriate targets. These findings establish a powerful invertebrate system for cue-triggered binary decisions and demonstrate that noise can be exploited by motivational systems to make behaviors scalable and flexible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.