Aims: This study was conducted to enhance the tolerance of common beans to drought events occurring at the reproductive stage, from a soil improvement perspective. Study Design: Split plot completely randomized design was used. Place and Duration of Study: Study was conducted in a screen-house at the Legumes and Oil Seeds Division of CSIR-Crops Research Institute, Ghana, from September 2021 to January 2022. Methodology: Municipal Solid Waste Compost and inorganic fertilizer combinations were applied to common beans in a pot experiment. They included control, full rate compost (FRAC), full rate fertilizer (NPK 5:30:30 kg/ha) (FRG), FRG + half rate compost (HRAC) and FRG + FRAC. All soils were maintained at 80% field capacity (FC) from the start of the experiment. At flowering, two groups of plants were water stressed till 40 and 16% FC and returned to 80% FC till physiological maturity, while one group maintained 80% FC throughout study. Forty-five soil samples each and plant data were collected at 3, 7 and 10 weeks after planting. Samples were analyzed for soil organic matter (SOM) and water retention, soil nutrients, crop growth, yield and nutrient uptake. Water and nitrogen use efficiencies (W/NUE) were calculated after harvest. Results: During the growing period, highest soil moisture (6-9 cm3/cm3) was retained by FRG and FRG+HRAC, FRG+FRAC; 20-38% more than FRAC and control but was not influenced by SOM. While FRG influenced the highest yield and WUE, combining it with compost rates reduced yield by 56-84% and WUE by 55-64%. WUE correlated positively with NUE. Conclusion: Antagonistic effect observed with integrating compost with FRG is likely because compost was not properly cured and immobilized soil nitrogen. Farmers can mitigate short-term drought effects on common beans with adequate nutrient supply through fertilizer application; however, fertilizer should only be integrated with compost after compost quality analysis.
Complex controls and non-linear responses of the climate system to global warming make it difficult to have clear-cut predictions of future precipitation amounts and timelines. It is, however, evident from current observations that some predictions of unusually high rates of flooding and droughts are occurring and threatening food security in sub-Saharan Africa (SSA). The impact of climate change is immense on SSA though it contributes the least to climate change globally. Crops face lots of growth challenges which reduce their productivity under drought and flood conditions. SSA must prepare agricultural soils for the anticipated climate variabilities, to ensure sustainable food availability. The effort to adapt soils to climate change must be a concerted one, using technologies from various facets of science. Stakeholders must adopt water-smart strategies that maintain proper soil-water balance. They should focus on manageable inherent soil properties that control the susceptibility/adaptability of cropping systems to climate change. Conservation agriculture techniques that target improving soil organic matter and maintaining soil life; protecting the soil from compaction and erosion; reducing soil disturbance; enhancing soil infiltration and groundwater recharge capacity, must be applied to our soils. A number of these techniques equip the soils to be better sinks of excess water in flood-prone areas and improve water-holding capacities in drought-prone ones. Governments, farmers, and all stakeholders must also invest in both simple and complex water harvesting/ re-directing infrastructure which conserve water for future use. Water-efficient irrigation systems must be employed by farmers during water scarcity. Most importantly, gaps between research, industry, farmers, and governments must be bridged to for easy flow of information on improved technologies and quick adoption of climate change mitigation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.