Wireless data transmission with binary phase-shift keying modulation encoded on a 92 GHz carrier is achieved using photonic components. A high-speed photodiode is used to convert the doubly-modulated optical signal to a modulated millimeter-wave carrier. A W-band Mach-Zehnder interferometer with a one-bit time delay is used to directly detect the differential phase-shift keyed millimeter-wave wireless signal without the use of a local oscillator. Field tests with antennas separated by 890 m demonstrate the ability to discriminate two phase states for differential binary phase shift keying (DBPSK) and four phase states for differential quadrature phase shift keying (DQPSK) at data rates of 2.3 Gb/s and 4.6 Gb/s, respectively.Index Terms-Differential phase shift keying, integrated optics, microwave photonics, millimeter-wave communication, quadrature phase shift keying.
System requirements, including carrier frequency, transmitted power and antenna gain are presented for a 10 Gb/s satellite downlink operating at millimeter-wave frequencies. Telecommunications-grade optical components and a highspeed photodiode are used to generate and modulate millimeter-wave carrier frequencies between 90 GHz and 100 GHz at data rates in excess of 10 Gb/s. Experimental results are presented that determine the minimum received power level needed for error-free wireless data transmission. Commercially available W-band power amplifiers are shown to increase the transmitted power level and extend the error-free propagation distance to distances of 10 km. Experimental results and documented atmospheric attenuation values for clouds, fog and rain are used to estimate link budgets for a wireless downlink located on a low-earth-orbiting satellite operating at an altitude of 350 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.