In this paper, we present an Extended Kalman Filter (EKF)-based algorithm for real-time vision-aided inertial navigation. The primary contribution of this work is the derivation of a measurement model that is able to express the geometric constraints that arise when a static feature is observed from multiple camera poses. This measurement model does not require including the 3D feature position in the state vector of the EKF and is optimal, up to linearization errors. The vision-aided inertial navigation algorithm we propose has computational complexity only linear in the number of features, and is capable of high-precision pose estimation in large-scale real-world environments. The performance of the algorithm is demonstrated in extensive experimental results, involving a camera/IMU system localizing within an urban area.
In this paper, we present a new approach to the problem of simultaneously localizing a group of mobile robots capable of sensing one another. Each of the robots collects sensor data regarding its own motion and shares this information with the rest of the team during the update cycles. A single estimator, in the form of a Kalman filter, processes the available positioning information from all the members of the team and produces a pose estimate for every one of them. The equations for this centralized estimator can be written in a decentralized form, therefore allowing this single Kalman filter to be decomposed into a number of smaller communicating filters. Each of these filters processes sensor data collected by its host robot. Exchange of information between the individual filters is necessary only when two robots detect each other and measure their relative pose. The resulting decentralized estimation schema, which we call collective localization, constitutes a unique means for fusing measurements collected from a variety of sensors with minimal communication and processing requirements. The distributed localization algorithm is applied to a group of three robots and the improvement in localization accuracy is presented. Finally, a comparison to the equivalent decentralized information filter is provided.
Abstract-When dealing with decentralized estimation, it is important to reduce the cost of communicating the distributed observations-a problem receiving revived interest in the context of wireless sensor networks. In this paper, we derive and analyze distributed state estimators of dynamical stochastic processes, whereby the low communication cost is effected by requiring the transmission of a single bit per observation. Following a Kalman filtering (KF) approach, we develop recursive algorithms for distributed state estimation based on the sign of innovations (SOI). Even though SOI-KF can afford minimal communication overhead, we prove that in terms of performance and complexity it comes very close to the clairvoyant KF which is based on the analog-amplitude observations. Reinforcing our conclusions, we show that the SOI-KF applied to distributed target tracking based on distance-only observations yields accurate estimates at low communication cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.