The ability to form anticipatory representations of ongoing actions is crucial for effective interactions in dynamic environments. In sports, elite athletes exhibit greater ability than novices in predicting other players' actions, mainly based on reading their body kinematics. This superior perceptual ability has been associated with a modulation of visual and motor areas by visual and motor expertise. Here, we investigated the causative role of visual and motor action representations in experts' ability to predict the outcome of soccer actions. We asked expert soccer players (outfield players and goalkeepers) and novices to predict the direction of the ball after perceiving the initial phases of penalty kicks that contained or not incongruent body kinematics. During the task, we applied repetitive transcranial magnetic stimulation (rTMS) over the superior temporal sulcus (STS) and the dorsal premotor cortex (PMd). Results showed that STS-rTMS disrupted performance in both experts and novices, especially in those with greater visual expertise (i.e. goalkeepers). Conversely, PMd-rTMS impaired performance only in expert players (i.e. outfield players and goalkeepers), who exhibit strong motor expertise into facing domain-specific actions in soccer games. These results provide causative evidence of the complimentary functional role of visual and motor action representations in experts' action prediction.
BackgroundSustaining the wellbeing for children with an autism spectrum disorder (ASD) can be highly demanding. Dance Movement Psychotherapy (DMP), a form of psychotherapy with a non-verbal character, may present as a relevant intervention option for this group of children.MethodsA protocol-based group DMP intervention was developed and implemented in two special educational needs schools in the North West of England. We aimed to investigate the effects of DMP on children with ASD using the Social Communication Questionnaire (SCQ) and Strengths and Difficulties Questionnaire (SDQ). Twenty-six children aged between 8 and 13 years (mean age = 10.65 years) with ASD were randomly allocated to DMP and a control group with standard care, following a crossover research design.ResultsResults showed no significant carryover or period effects for either the SCQ or SDQ (p > 0.05). A significant intervention effect was found only for SCQ (p = 0.005) but not for SDQ (p > 0.05). ANCOVAs were performed on the data before the crossover to test for differences in SCQ and SDQ scores between the DMP intervention and control groups while controlling for pre-intervention scores. Those in the DMP intervention group presented significantly lower SCQ scores following the intervention period than those in the control group (p = 0.001). No significant differences in post-intervention SDQ scores were found between DMP intervention and control groups (p = 0.2). However, minimal clinically important differences (MCID) were reached for both SCQ and SDQ measures before crossover for those in the DMP intervention group. Moreover, repeated measures ANOVAs performed on SCQ and SDQ measures following crossover were significant, with the change in both SCQ (p = 0.001) and SDQ (p = 0.009) pre-and post-intervention being significantly greater for those in the DMP intervention than the control group.ConclusionThe pilot DMP intervention has shown promising results on the social and emotional wellbeing of children with ASD irrespective of whether they preferred verbal or non-verbal mode of communication. Limitations and appropriateness of the research methods implemented in this study for their use in a large RCT are discussed in detail. Overall, our findings highlight the value of creative therapies for improving the lives of young vulnerable groups.
Previous studies showed that observing deceptive actions modulates the activity of the observer's motor system. However, it is unclear whether this modulation reflects the coding of deceptive intentions or the mapping of the kinematic adaptations required to attain deceptive actions. Here, we used single-pulse transcranial magnetic stimulation to measure cortico-spinal excitability (CSE) from hand and forearm muscles while participants predicted the weight of cubes lifted by actors who received truthful information on the object weight and provided 1) truthful (truthful actions) or 2) deceptive (deceptive actions) cues to the observers or 3) who received fooling information and were asked to provide truthful cues (deceived actions). This way, we independently manipulated actor's intentions and kinematic adaptations. We found that, as compared to truthful action observation, CSE increased during observation of deceptive actions, but decreased during observation of deceived actions. Importantly, while the CSE enhancement in response to deceptive intentions lacked muscle specificity, perceiving kinematic alterations in the deceived condition affected CSE only for the hand muscle involved in kinematic adaptations to unexpected object weight. This suggests that actor's intentions and movement kinematics may be coded by the observer's motor system at different hierarchical levels of action representation.
Neural circuits associated with response conflict are active during deception. Here we use transcranial magnetic stimulation to examine for the first time whether competing responses in primary motor cortex can be used to detect lies. Participants used their little finger or thumb to respond either truthfully or deceitfully regarding facial familiarity. Motor-evoked-potentials (MEPs) from muscles associated with both digits tracked the development of each motor plan. When preparing to deceive, the MEP of the non-responding digit (i.e. the plan corresponding to the truth) exceeds the MEP of the responding digit (i.e. the lie), whereas a mirror-reversed pattern occurs when telling the truth. This give away response conflict interacts with the time of stimulation during a speeded reaction period. Lies can even activate digit-specific cortical representations when only verbal responses are made. Our findings support neurobiological models which blend cognitive decision-making with motor programming, and suggest a novel index for discriminating between honest and intentionally false facial recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.