Kriging-based finite element method (K-FEM) is an enhancement of the conventional finite element method using a Kriging interpolation as the trial solution in place of a polynomial function. In the application of the K-FEM to the Timoshenko beam model, the discrete shear gap (DSG) technique has been employed to overcome the shear locking difficulty. However, the applied DSG was only effective for the Kriging-based beam element with a cubic basis and three element-layer domain of influencing nodes. Therefore, this research examines a modified implementation of the DSG by changing the substitute DSG field from the Kriging-based interpolation to linear interpolation of the shear gaps at the element nodes. The results show that the improved elements of any polynomial degree are free from shear locking. Furthermore, the results of beam deflection, cross-section rotation, and bending moment are very accurate, while the shear force field is piecewise constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.