IntroductionMammographic density is a strong breast cancer risk factor and a major determinant of screening sensitivity. However, there is currently no validated estimation method for full-field digital mammography (FFDM).MethodsThe performance of three area-based approaches (BI-RADS, the semi-automated Cumulus, and the fully-automated ImageJ-based approach) and three fully-automated volumetric methods (Volpara, Quantra and single energy x-ray absorptiometry (SXA)) were assessed in 3168 FFDM images from 414 cases and 685 controls. Linear regression models were used to assess associations between breast cancer risk factors and density among controls, and logistic regression models to assess density-breast cancer risk associations, adjusting for age, body mass index (BMI) and reproductive variables.ResultsQuantra and the ImageJ-based approach failed to produce readings for 4% and 11% of the participants. All six density assessment methods showed that percent density (PD) was inversely associated with age, BMI, being parous and postmenopausal at mammography. PD was positively associated with breast cancer for all methods, but with the increase in risk per standard deviation increment in PD being highest for Volpara (1.83; 95% CI: 1.51 to 2.21) and Cumulus (1.58; 1.33 to 1.88) and lower for the ImageJ-based method (1.45; 1.21 to 1.74), Quantra (1.40; 1.19 to 1.66) and SXA (1.37; 1.16 to 1.63). Women in the top PD quintile (or BI-RADS 4) had 8.26 (4.28 to 15.96), 3.94 (2.26 to 6.86), 3.38 (2.00 to 5.72), 2.99 (1.76 to 5.09), 2.55 (1.46 to 4.43) and 2.96 (0.50 to 17.5) times the risk of those in the bottom one (or BI-RADS 1), respectively, for Volpara, Quantra, Cumulus, SXA, ImageJ-based method, and BI-RADS (P for trend <0.0001 for all). The ImageJ-based method had a slightly higher ability to discriminate between cases and controls (area under the curve (AUC) for PD = 0.68, P = 0.05), and Quantra slightly lower (AUC = 0.63; P = 0.06), than Cumulus (AUC = 0.65).ConclusionsFully-automated methods are valid alternatives to the labour-intensive "gold standard" Cumulus for quantifying density in FFDM. The choice of a particular method will depend on the aims and setting but the same approach will be required for longitudinal density assessments.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-014-0439-1) contains supplementary material, which is available to authorized users.
BackgroundMammographic density (MD) is one of the strongest breast cancer risk factors. Its age-related characteristics have been studied in women in western countries, but whether these associations apply to women worldwide is not known.Methods and findingsWe examined cross-sectional differences in MD by age and menopausal status in over 11,000 breast-cancer-free women aged 35–85 years, from 40 ethnicity- and location-specific population groups across 22 countries in the International Consortium on Mammographic Density (ICMD). MD was read centrally using a quantitative method (Cumulus) and its square-root metrics were analysed using meta-analysis of group-level estimates and linear regression models of pooled data, adjusted for body mass index, reproductive factors, mammogram view, image type, and reader. In all, 4,534 women were premenopausal, and 6,481 postmenopausal, at the time of mammography. A large age-adjusted difference in percent MD (PD) between post- and premenopausal women was apparent (–0.46 cm [95% CI: −0.53, −0.39]) and appeared greater in women with lower breast cancer risk profiles; variation across population groups due to heterogeneity (I2) was 16.5%. Among premenopausal women, the √PD difference per 10-year increase in age was −0.24 cm (95% CI: −0.34, −0.14; I2 = 30%), reflecting a compositional change (lower dense area and higher non-dense area, with no difference in breast area). In postmenopausal women, the corresponding difference in √PD (−0.38 cm [95% CI: −0.44, −0.33]; I2 = 30%) was additionally driven by increasing breast area. The study is limited by different mammography systems and its cross-sectional rather than longitudinal nature.ConclusionsDeclines in MD with increasing age are present premenopausally, continue postmenopausally, and are most pronounced over the menopausal transition. These effects were highly consistent across diverse groups of women worldwide, suggesting that they result from an intrinsic biological, likely hormonal, mechanism common to women. If cumulative breast density is a key determinant of breast cancer risk, younger ages may be the more critical periods for lifestyle modifications aimed at breast density and breast cancer risk reduction.
Mammographic density (MD) is a quantitative trait, measurable in all women, and is among the strongest markers of breast cancer risk. The population-based epidemiology of MD has revealed genetic, lifestyle and societal/environmental determinants, but studies have largely been conducted in women with similar westernized lifestyles living in countries with high breast cancer incidence rates. To benefit from the heterogeneity in risk factors and their combinations worldwide, we created an International Consortium on Mammographic Density (ICMD) to pool individual-level epidemiological and MD data from general population studies worldwide. ICMD aims to characterize determinants of MD more precisely, and to evaluate whether they are consistent across populations worldwide. We included 11755 women, from 27 studies in 22 countries, on whom individual-level risk factor data were pooled and original mammographic images were re-read for ICMD by a core team to obtain standardized comparable MD data. In the present article, we present (i) the rationale for this consortium; (ii) characteristics of the studies and women included; and (iii) study methodology to obtain comparable MD data from original re-read films. We also highlight the risk factor heterogeneity captured by such an effort and, thus, the unique insight the pooled study promises to offer through wider exposure ranges, different confounding structures and enhanced power for sub-group analyses.
Background Guide-wire localisation remains the most commonly used technique for localisation of impalpable breast lesions in the UK. One alternative is magnetic seed localisation. We aimed to investigate patient and clinician satisfaction in two consecutive cohorts, describe re-excision and positive margin rates, and explore reasons for positive margins and the implications for localisation techniques. Methods A single-institution prospective service evaluation of two cohorts of consecutive cases of wire and then Magseed localisation was carried out. Data were collected on patient and clinician satisfaction, clinico-pathological findings, and causes of involved margins. T tests were used to compare continuous variables and Chi-squared test for satisfaction outcomes. Results 168 consecutive cases used wire-guided localisation (WGL) and 128 subsequent cases used Magseeds. Patients reported less anxiety between localisation and surgery in the Magseed group, and clinicians reported greater ease of use of Magseeds. There were no differences in lesion size, surgical complexity, or re-excision rate between the groups. In a subset of patients receiving standard wide local excision (i.e., excluding mammoplasties), the impact on margin involvement was investigated. There was no significant difference in radiological under-sizing or accuracy of localisation. However, specimen weight and eccentricity of the lesion were statistically significantly lower in the Magseed group. Despite this, re-excision rates were not significantly different (p = 0.4). Conclusions This is the first large study of satisfaction with localisation and showed clinician preference for Magseed and a reduction in patient anxiety. It also demonstrated similar positive margin rates despite smaller specimen weights in the Magseed group. Magnetic seed localisation offers an acceptable clinical alternative to guide wire localisation. The impact on local service provision should also be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.