A nanoscale layer of chromium or titanium is commonly used in plasmonic nanoantennas to firmly adhere a gold film to a glass substrate, yet the influence of this layer on the antenna performance is often ignored. As a result, the need for the use of potentially better materials is not widely recognized. Using a single aperture milled in a gold film with 120 nm diameter as a nanobench for these investigations, we present the first experimental report of the strong dependence of the plasmonic enhancement of single-molecule fluorescence on the nature of the adhesion layer. By combining fluorescence correlation spectroscopy and fluorescence lifetime measurements, we show that this structure is very sensitive to the properties of the adhesion layer, and we detail the respective contributions of excitation and emission gains to the observed enhanced fluorescence. Any increase in the absorption losses due to the adhesion layer permittivity or thickness is shown to lower the gains in both excitation and emission, which we relate to a damping of the energy coupling at the nanoaperture. With this nanobench, we demonstrate the largest enhancement factor reported to date (25×) by using a TiO(2) adhesion layer. The experimental data are supported by numerical simulations and argue for a careful consideration of the adhesion layer while designing nanoantennas for high-efficiency single-molecule analysis.
We report the resonant excitation of a fluorescing molecular monolayer applied to a periodic array of subwavelength apertures in a metal film. The peak fluorescence occurs under conditions of maximum transmission of the excitation light, which indicates strong enhancement of the incident light within the apertures under resonant conditions. Fluorescence output normalized to the aperture fill fraction is enhanced by nearly 40 times, and the rate of photobleaching is increased by approximately a factor of 2, suggesting an increase in the fluorescence yield.
The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting ('Rashba splitting') occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.