The deposition of fibrin is an integral part of the tissue repair process, but its persistence is also associated with a number of fibrotic conditions. This study addressed the hypothesis that reduced fibrinolysis and fibrin persistence are associated with an enhanced accumulation of collagen and the development of skin fibrosis. Decreased fibrinolysis was confirmed in fibrin gel cultures that contained human dermal fibroblasts plus the specific plasmin inhibitor ␣ 2 -antiplasmin or dermal fibroblasts isolated from plasminogen activator (PA)-deficient mice. Collagen accumulation was significantly increased in the presence of inhibitor and in tPA-deficient, but not uPAdeficient, fibroblasts compared with controls. These findings were also confirmed using a skin fibrosis model in which multiple injections of fibrin were given subcutaneously to PA-deficient mice. Injection sites from tPA-deficient mice displayed significantly increased collagen levels compared with uPA-deficient mice and wild-type controls. Up-regulation of fibroblast procollagen gene expression and reduced activation of pro-MMP-1 appeared to mediate the increase in collagen by human dermal fibroblasts in the presence of ␣2-antiplasmin. These findings suggest that persistent fibrin is associated with enhanced collagen accumulation that may result in the development of fibrotic skin disorders in which reduced fibrinolysis is a feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.