The Reference Antarctic Data for Environmental Research (READER) project data set of monthly mean Antarctic nearsurface temperature, mean sea-level pressure (MSLP) and wind speed has been used to investigate trends in these quantities over the last 50 years for 19 stations with long records. Eleven of these had warming trends and seven had cooling trends in their annual data (one station had too little data to allow an annual trend to be computed), indicating the spatial complexity of change that has occurred across the Antarctic in recent decades. The Antarctic Peninsula has experienced a major warming over the last 50 years, with temperatures at Faraday/Vernadsky station having increased at a rate of 0.56°C decade −1 over the year and 1.09°C decade −1 during the winter; both figures are statistically significant at less than the 5% level. Overlapping 30 year trends of annual mean temperatures indicate that, at all but two of the 10 coastal stations for which trends could be computed back to 1961, the warming trend was greater (or the cooling trend less) during the 1961-90 period compared with 1971-2000. All the continental stations for which MSLP data were available show negative trends in the annual mean pressures over the full length of their records, which we attribute to the trend in recent decades towards the Southern Hemisphere annular mode (SAM) being in its high-index state. Except for Halley, where the trends are constant, the MSLP trends for all stations on the Antarctic continent for 1971-2000 were more negative than for 1961-90. All but two of the coastal stations have recorded increasing mean wind speeds over recent decades, which is also consistent with the change in the nature of the SAM.
A new dataset of monthly and annual mean near-surface climate data (temperature, surface and mean sea level pressure, and wind speed) for the Antarctic region has been created using historical observations [Scientific Committee on Antarctic Research (SCAR) Reference Antarctic Data for Environmental Research (READER)]. Where possible, 6-hourly surface synoptic and automatic weather station observations were used to compute the means. The ability to quality control the data at the level of individual observations has produced a more accurate series of monthly means than was available previously. At the time of writing, the mean data are available on the Internet (http://www.antarctica.ac.uk/met/programs-hosted.html). Data for 43 surface-staffed stations and 61 automatic weather stations are included in the database. Here, mean temperature, pressure, and wind speed data for 19 occupied stations with long records are provided.
Variability and change in near-surface air temperature at 17 Antarctic stations is examined using data from the SCAR READER database. We consider the relationships between temperature, and atmospheric circulation, sea ice concentration and forcing by the tropical oceans. All 17 stations have their largest inter-annual temperature variability during the winter and the annual mean temperature anomalies are dominated by winter temperatures. The large interannual temperature variability on the western Antarctic Peninsula has decreased over the instrumental period as sea ice has declined. Variability in the phase of the SAM exerts the greatest control of temperatures, although tropical Pacific forcing has also played a large part, along with local atmospheric circulation variability at some locations. The relationship of positive (negative) SAM and high (low) Peninsula and low (high) East Antarctic temperatures was not present before the mid-1970s. Thirteen of the 17 stations have experienced a positive trend in their annual mean temperature over the full length of their record, with the largest being at Vernadsky (formerly Faraday) (0.46 ± 0.15 CÁdec −1 ) on the western side of the Antarctic Peninsula. The deepening of the Amundsen Sea low as a result of the more positive SAM and changes in the IPO and PDO have contributed to the warming of the Peninsula. Beyond the Antarctic Peninsula there has been little significant change in temperature.The two plateau stations had a small cooling from the late 1970s to the late 1990s consistent with the SAM becoming positive, but have subsequently warmed. During spring there has been an Antarctic-wide warming, with all but one station having experienced an increase in temperature, although the only trends that were significant were at Vostok, Scott base, Vernadsky and Amundsen-Scott. In this season, much of the Peninsula/West Antarctic warming can be attributed to tropical Pacific forcing through the IPO/PDO. K E Y W O R D SAntarctica, climate change, climate variability, temperature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.