Dinoflagellates are important components of marine ecosystems and essential coral symbionts, yet little is known about their genomes. We report here on the analysis of a high-quality assembly from the 1180-megabase genome of Symbiodinium kawagutii. We annotated protein-coding genes and identified Symbiodinium-specific gene families. No whole-genome duplication was observed, but instead we found active (retro)transposition and gene family expansion, especially in processes important for successful symbiosis with corals. We also documented genes potentially governing sexual reproduction and cyst formation, novel promoter elements, and a microRNA system potentially regulating gene expression in both symbiont and coral. We found biochemical complementarity between genomes of S. kawagutii and the anthozoan Acropora, indicative of host-symbiont coevolution, providing a resource for studying the molecular basis and evolution of coral symbiosis.
Dinoflagellates are an important component of the marine biota, but a large genome with high–copy number (up to 5,000) tandem gene arrays has made genomic sequencing problematic. More importantly, little is known about the expression and conservation of these unusual gene arrays. We assembled de novo a gene catalog of 74,655 contigs for the dinoflagellate Lingulodinium polyedrum from RNA-Seq (Illumina) reads. The catalog contains 93% of a Lingulodinium EST dataset deposited in GenBank and 94% of the enzymes in 16 primary metabolic KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, indicating it is a good representation of the transcriptome. Analysis of the catalog shows a marked underrepresentation of DNA-binding proteins and DNA-binding domains compared with other algae. Despite this, we found no evidence to support the proposal of polycistronic transcription, including a marked underrepresentation of sequences corresponding to the intergenic spacers of two tandem array genes. We also have used RNA-Seq to assess the degree of sequence conservation in tandem array genes and found their transcripts to be highly conserved. Interestingly, some of the sequences in the catalog have only bacterial homologs and are potential candidates for horizontal gene transfer. These presumably were transferred as single-copy genes, and because they are now all GC-rich, any derived from AT-rich contexts must have experienced extensive mutation. Our study not only has provided the most complete dinoflagellate gene catalog known to date, it has also exploited RNA-Seq to address fundamental issues in basic transcription mechanisms and sequence conservation in these algae.
The cosmopolitan presence of dinoflagellates in aquatic habitats is now believed to be a direct consequence of the different trophic modes they have developed through evolution. While heterotrophs ingest food and photoautotrophs photosynthesize, mixotrophic species are able to use both strategies to harvest energy and nutrients. These different trophic modes are of particular importance when nitrogen nutrition is considered. Nitrogen is required for the synthesis of amino acids, nucleic acids, chlorophylls, and toxins, and thus changes in the concentrations of various nitrogenous compounds can strongly affect both primary and secondary metabolism. For example, high nitrogen concentration is correlated with rampant cell division resulting in the formation of the algal blooms commonly called red tides. Conversely, nitrogen starvation results in cell cycle arrest and induces a series of physiological, behavioral and transcriptomic modifications to ensure survival. This review will combine physiological, biochemical, and transcriptomic data to assess the mechanism and impact of nitrogen metabolism in dinoflagellates and to compare the dinoflagellate responses with those of diatoms.
BackgroundAlmost all cells display circadian rhythms, approximately 24-hour period changes in their biochemistry, physiology or behavior. These rhythms are orchestrated by an endogenous circadian clock whose mechanism is based on transcription-translation feedback loops (TTFL) where the translated products of clock genes act to inhibit their own transcription.ResultsWe have used RNA-Seq to measure the abundance of all transcripts in an RNA-Seq-derived de novo gene catalog in two different experiments. One compared midday and midnight in a light–dark cycle (ZT6 and ZT18) and under constant light (CT6 and CT18). The second compared four different times (ZT2, ZT6, ZT14 and ZT18) under a light dark cycle. We show here that despite an elaborate repertoire of biological rhythms, the unicellular dinoflagellate Lingulodinium had no detectable daily variation in the abundance of any transcript in an RNA-Seq-derived de novo gene catalog. We also examined the timing of the bioluminescence and photosynthesis rhythms in the presence of the transcription inhibitors actinomycin D and cordycepin. We found that the timing of the two rhythms was unchanged even when transcription rates had decreased to roughly 5% the levels of untreated cells.ConclusionsThe lack of detectable daily variation in transcript levels indicates that the endogenous circadian timer of Lingulodinium does not require rhythmic RNA. If the circadian timer is considered as a limit cycle oscillator, then cellular time in this organism must be defined by variations in state variables that do not include the amount of a clock gene transcript.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-014-0107-z) contains supplementary material, which is available to authorized users.
Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.