Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G-->A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol gamma , that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)-deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype.
Mitochondrial DNA (mtDNA) damage, predominantly encompassing point mutations, has been reported in a variety of cancers. Here we present in human skin, the first detailed study of the distribution of multiple forms of mtDNA damage in nonmelanoma skin cancer (NMSC) compared to histologically normal perilesional dermis and epidermis. We present the first entire spectrum of deletions found between different types of skin tumours and perilesional skin. In addition, we provide the first quantitative data for the incidence of the common deletion as well as the first report of specific tandem duplications in tumours from any tissue. Importantly, this work shows that there are clear differences in the distribution of deletions between the tumour and the histologically normal perilesional skin. Furthermore, DNA sequencing of four mutation 'hotspot' regions of the mitochondrial genome identified a previously unreported somatic heteroplasmic mutation in an SCC patient. In addition, 81 unreported and reported homoplasmic single base changes were identified in the other NMSC patients. Unlike the distribution of deletions and the heteroplasmic mutation, these homoplasmic mutations were present in both tumour and perilesional skin, which suggests that for some genetic studies the traditional use of histologically normal perilesional skin from NMSC patients may be limited. Currently, it is unclear whether mtDNA damage has a direct link to skin cancer or it may simply reflect an underlying nuclear DNA instability.
Background: The 3243ARG MTTL1 mutation is the most common heteroplasmic mitochondrial DNA (mtDNA) mutation associated with disease. Previous studies have shown that the percentage of mutated mtDNA decreases in blood as patients get older, but the mechanisms behind this remain unclear. Objectives and method: To understand the dynamics of the process and the underlying mechanisms, an accurate fluorescent assay was established for 3243ARG heteroplasmy and the amount of mtDNA in blood with real-time polymerase chain reaction was determined. The amount of mutated and wild-type mtDNA was measured at two time points in 11 subjects. Results: The percentage of mutated mtDNA decreases exponentially during life, and peripheral blood leucocytes in patients harbouring 3243ARG are profoundly depleted of mtDNA. Conclusions: A similar decrease in mtDNA has been seen in other mitochondrial disorders, and in 3243ARG cell lines in culture, indicating that depletion of mtDNA may be a common secondary phenomenon in several mitochondrial diseases. Depletion of mtDNA is not always due to mutation of a nuclear gene involved in mtDNA maintenance.
Mitochondrial DNA (mtDNA) mutations are a common cause of human disease and accumulate as part of normal ageing and in common neurodegenerative disorders. Cells express a biochemical defect only when the proportion of mutated mtDNA exceeds a critical threshold, but it is not clear whether the actual cause of this defect is a loss of wild-type mtDNA, an excess of mutated mtDNA, or a combination of the two. Here, we show that segments of human skeletal muscle fibers harboring two pathogenic mtDNA mutations retain normal cytochrome c oxidase (COX) activity by maintaining a minimum amount of wild-type mtDNA. For these mutations, direct measurements of mutated and wild-type mtDNA molecules within the same skeletal muscle fiber are consistent with the "maintenance of wild type" hypothesis, which predicts that there is nonselective proliferation of mutated and wild-type mtDNA in response to the molecular defect. However, for the m.3243A-->G mutation, a superabundance of wild-type mtDNA was found in many muscle-fiber sections with negligible COX activity, indicating that the pathogenic mechanism for this particular mutation involves interference with the function of the wild-type mtDNA or wild-type gene products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.