This paper presents results from an adaptive optics experiment in which an adaptive control loop augments a classical adaptive optics feedback loop. Closed-loop wavefront errors measured by a self-referencing interferometer are fed back to the control loops, which drive a membrane deformable mirror to correct the wavefront. The paper introduces new frequency-weighted deformable mirror modes used as the control channels and new wavefront sensor modes for analyzing the performance of the control loops. The corrected laser beam also is imaged by a diagnostic target camera. The experimental results show reduced closed-loop wavefront errors and correspondingly sharper diagnostic target images produced by the adaptive control loop as compared with the classical AO loop.
This paper reports the experimental system identification of the Jet Propulsion Laboratory MEMS vibratory rate gyroscope. A primary objective is to estimate the orientation of the stiffness matrix principal axes for important sensor dynamic modes with respect to the electrode pick-offs in the sensor. An adaptive lattice filter is initially used to identify a high-order two-input/two-output transfer function describing the input/output dynamics of the sensor. A three-mode model is then developed from the identified input/output model to determine the axes’ orientation. The identified model, which is extracted from only two seconds of input/output data, also yields the frequency split between the sensor’s modes that are exploited in detecting the rotation rate. The principal axes’ orientation and frequency split give direct insight into the source of quadrature measurement error that corrupts detection of the sensor’s angular rate.
This paper compares two control methods to predict and correct aero-optical wavefronts derived from recent flight-test data. The first is an optimal linear time-invariant controller constructed from an identified state-space model of the turbulence flow. The second control method is an adaptive controller based on a recursive least-squares lattice filter. The performance of these control schemes versus classical integrator methods is investigated in an adaptive optics experiment that reproduces the aberrations from in-flight measurements of aero-optical turbulence. Experimental results show the improvement in wavefront correction achieved by both prediction methods. Altering the flow characteristics of the disturbance wavefront during the control process illustrates the ability of the adaptive controller to track changes in the aberration statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.