This paper presents preliminary results of a computational study conducted to analyze the impulse waves generated by the subaerial landslide at Lituya Bay, Alaska. The volume of fluid (VOF) method is used to track the free surface and shoreline movements. The Renormalization Group (RNG) turbulence model and Detached Eddy Simulation (DES) multiscale model were used to simulate turbulence dissipation. The subaerial landslide is simulated using a sliding mass. Results from the twodimensional (2-D) simulations are compared with results from a scaled-down experiment. The experiment is carried out at a 1:675 scale. In the experimental setup, the subaerial rockslide impact into the Gilbert Inlet, wave generation, propagation, and runup on the headland slope are considered in a geometrically undistorted Froude similarity model. The rockslide is simulated by a granular material driven by a pneumatic acceleration mechanism so that the impact characteristics can be controlled. Simulations are performed for different values of the landslide density to estimate the influence of slide deformation on the generated tsunami characteristics. Simulated results show the complex flow patterns in terms of the velocity field, shoreline evolution, and free surface profiles. The predicted wave runup height is in close agreement with both the observed wave runup height and that obtained from the scaleddown experimental model.
This paper presents preliminary results of a computational study conducted to analyze the impulse waves generated by the subaerial landslide at Lituya Bay, Alaska. The volume of fluid (VOF) method is used to track the free surface and shoreline movements. The Renormalization Group (RNG) turbulence model and Detached Eddy Simulation (DES) multiscale model were used to simulate turbulence dissipation. The subaerial landslide is simulated using a sliding mass. Results from the two-dimensional (2-D) simulations are compared with results from a scaled-down experiment. The experiment is carried out at a 1:675 scale. In the experimental setup, the subaerial rockslide impact into the Gilbert Inlet, wave generation, propagation, and runup on the headland slope are considered in a geometrically undistorted Froude similarity model. The rockslide is simulated by a granular material driven by a pneumatic acceleration mechanism so that the impact characteristics can be controlled. Simulations are performed for different values of the landslide density to estimate the influence of slide deformation on the generated tsunami characteristics. Simulated results show the complex flow patterns in terms of the velocity field, shoreline evolution, and free surface profiles. The predicted wave runup height is in close agreement with both the observed wave runup height and that obtained from the scaled-down experimental model.
Tsunami wave generation by submarine and aerial landslides is examined in this paper. Two different two-dimensional numerical methods have been used to simulate the time histories of fluid motion, free surface deformation, shoreline movement, and wave runup from tsunami waves generated by aerial and submarine landslides. The first approach is based on the Navier-Stokes equation and the volume of fluid (VOF) method: the Reynolds Averaged Navier-Stokes (RANS)-based turbulence model simulates turbulence, and the VOF method tracks the free surface locations. The second method uses Smoothed Particle Hydrodynamics (SPH)—a numerical model based on a fully Lagrangian approach. In the current work, two-dimensional numerical simulations are carried out for a freely falling wedge representing the landslide and subsequent wave generations. Numerical simulations for the landslide-driven tsunami waves have been performed with different values of landslide material densities. Numerical results obtained from both approaches are compared with experimental data. Simulated results for both aerial and submerged landslides show the complex flow patterns in terms of the velocity field, shoreline evolution, and free-surface profiles. Flows are found to be strongly transient, rotational, and turbulent. Predicted numerical results for time histories of free-surface fluctuations and the runup/rundown at various locations are in good agreement with the available experimental data. The similarity and discrepancy between the solutions obtained by the two approaches are explored and discussed.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.