Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from >6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs are grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparing with external sequences, thus serving as an essential resource in the viral genomics community.
The densities of chemoautotrophic and methanotrophic symbiont morphotypes were determined in life- history stages (post-larvae, juveniles, adults) of two species of mussels (Bathymodiolus azoricus and B. heckerae) from deep-sea chemosynthetic environments (the Lucky Strike hydrothermal vent and the Blake Ridge cold seep) in the Atlantic Ocean. Both symbiont morphotypes were observed in all specimens and in the same relative proportions, regardless of life-history stage. The relative abundance of symbiont morphotypes, determined by transmission electron microscopy, was different in the two species: chemoautotrophs were dominant (13:1-18:1) in B. azoricus from the vent site; methanotrophs were dominant (2:1-3:1) in B. heckerae from the seep site. The ratio of CH4:H2S is proposed as a determinant of the relative abundance of symbiont types: where CH4:H2S is less than 1, as at the Lucky Strike site, chemoautotrophic symbionts dominate; where CH4:H2S is greater than 2, as at the seep site, methanotrophs dominate. Organic carbon and nitrogen isotopic compositions of B. azoricus (delta 13C = -30 per thousand; delta 15N = -9 per thousand) and B. heckerae (delta 13C = -56 per thousand; delta 15N = -2 per thousand) varied little among life-history stages and provided no record of a larval diet of photosynthetically derived organic material in the post-larval and juvenile stages.
organizational objectives, provide feedback to from the user-community and to assist the JGI in formulating plans for the coming year. The advisors want to commend the JGI for its central role in developing new technologies and capabilities, and for catalyzing the formation of new collaborative user communities. Highlights of the post-meeting exchanges among the advisors focused on the importance of programmatic initiatives including:• GEBA, which serves as a phylogenetic "base-map" on which our knowledge of functional diversity can be layered.• FEBA, which promises to provide new insights into the physiological capabilities of prokaryotes under highly standardized conditions.• Single-cell genomics technology, which is seen to significantly enhance our ability to interpret genomic and metagenomic data and broaden the scope of the GEBA program to encompass at least a part of the microbial "dark-matter".• IMG, which is seen to play a central role in JGI programs and is viewed as a strategically important asset in the JGI portfolio.On this latter point, the committee encourages the formation of a strategic relationship between IMG and the Kbase to ensure that the intelligence, deep knowledge and experience captured in the former is not lost. The committee strongly urges the DOE to continue its support for maintaining this critical resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.