The present study was conducted to determine whether adolescents and/or the elderly are more sensitive to mobile phone (MP)-related bioeffects than young adults, and to determine this for both 2nd generation (2G) GSM, and 3rd generation (3G) W-CDMA exposures. To test this, resting alpha activity (8-12 Hz band of the electroencephalogram) was assessed because numerous studies have now reported it to be enhanced by MP exposure. Forty-one 13-15 year olds, forty-two 19-40 year olds, and twenty 55-70 year olds were tested using a double-blind crossover design, where each participant received Sham, 2G and 3G exposures, separated by at least 4 days. Alpha activity, during exposure relative to baseline, was recorded and compared between conditions. Consistent with previous research, the young adults' alpha was greater in the 2G compared to Sham condition, however, no effect was seen in the adolescent or the elderly groups, and no effect of 3G exposures was found in any group. The results provide further support for an effect of 2G exposures on resting alpha activity in young adults, but fail to support a similar enhancement in adolescents or the elderly, or in any age group as a function of 3G exposure.
Personal dosemeters can play an important role in epidemiological studies and in radiofrequency safety programmes. In this study, a Monte Carlo approach is used in conjunction with the finite difference time domain method to obtain distributions of the electric field strength close to a human body model in simulated realistic environments. The field is a proxy for the response of an ideal body-worn electric field dosemeter. A set of eight environments were modelled based on the statistics of Rayleigh, Rice and log-normal fading to simulate outdoor and indoor multipath exposures at 450, 900 and 2100 MHz. Results indicate that a dosemeter mounted randomly within 10-50 mm of the adult or child body model (torso region) will on average underestimate the spatially averaged value of the incident electric field strength by a factor of 0.52 to 0.74 over the frequencies of 450, 900 and 2100 MHz. The uncertainty in results, assessed at the 95 % confidence level (between the 2.5th and 97.5th percentiles) was largest at 2100 MHz and smallest at 450 MHz.
Objective:This study was conducted to examine sensory and cognitive processing in adolescents, young adults and older adults, when exposed to 2nd (2G) and 3rd (3G) generation mobile phone signals.
Methods:Tests employed were the auditory oddball and the N-back. Forty-one 13-15 year olds, forty-two 19-40 year olds and twenty 55-70 year olds were tested using a double-blind cross-over design, where each participant received Sham, 2G and 3G exposures, separated by at least 4 days.
Results:Accuracy was not affected by exposure overall, but an augmented N1 was found in the 2G condition (independent of age group). The combined groups performed less accurately on the N-back during the 3G exposure (compared to Sham), with post hoc tests finding this effect in the adolescents only. No effect of 2G exposure on N-back was found either overall or in any group separately, and no effect of 2G or 3G exposure was found on reaction time. Neurophysiological underpinnings (event-related alpha; ERA) of the 3G behavioural effects were also affected, with more early ERA and slower late ERA in the 3G (compared to Sham).
Conclusion/Significance:Employing tasks tailored to each individual's ability level, this study provides support for an effect of acute 3G exposure on human cognitive function.
This paper provides an insight into factors that can influence uncertainty in measurements at 900 MHz of electric fields close to the body for use in personal dosimetry. Computational simulations using the finite difference time domain method were used to determine the total electric field near the surface of the torso of heterogeneous (adult and child) human body models for a set of exposure scenarios that simulated both spatially constant and randomly varying incident fields. Modelling has shown that a properly responding isotropic electric field dosemeter mounted between 10 and 50 mm of the torso will on average underestimate the incident field strength by up to 6.45 dB. In the worst case (i.e. spatially constant field), the standard deviation or uncertainty reached 6.42 dB. Uncertainty was reduced to <2.17 dB by combining the simultaneous outputs of a pair of body-worn dosemeters (mounted front and rear of torso).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.