A flow-based immunoassay that uses microspheres as the solid phase accomplished the theoretical limit of detectability achievable with the antibody. An equilibrated mixture of anti-estriol monoclonal antibody and estriol was briefly exposed to a bead pack containing immobilized estriol in a flow cell. A small portion of free antibody was separated rapidly from the mixture by binding it to immobilized hormone, but the antibody-hormone complex was kinetically excluded from binding. This rapid separation prevented shift in the equilibrium of the liquid phase binding. Signals were generated by labeling the separated antibodies on the beads with a Cy5-conjugated antispecies secondary antibody. By labeling after the separation step, perturbing the liquid-phase or solid-phase binding was prevented. This assay allowed the reduction of the concentration of primary antibody by continuously accumulating free antibody onto the beads prior to quantification and, thus, offered ideal conditions to achieve theoretical limits of detectability. The optimum achievable dynamic range of this immunoassay was 4-300 pM. Because the proportion of free anti-estriol antibody in the mixture was controlled by the Kd of the antibody-estriol interaction, when the concentration of the antibody was below the Kd, the smallest detectable estriol concentration approached the theoretical limit of detectability achievable with this antibody.
Here, we describe the coordinated use of two antibodies with different affinities in a single immunoassay to extend the dynamic range and to enable detection of multiple analytes. The combination of dual antibodies was permitted with a flow-based assay at the antibody concentration below the dissociation constant, enabling affinity to govern the antibody-antigen binding. Both high and low affinity antibodies to estriol were used in combination to extend the range. The binding of each antibody was mutually independent and individually occurred over concentration ranges of 10 pM(-1) nM and 100 pM(-1) microM. The wide dynamic range of 10 pM(-1) microM was thus achieved as summation of the proportional signals to the total binding. When a combination of antibodies toward different antigens was used, it effectively detected multiple analytes within a mixture. In simultaneous analysis of a mixture of estradiol and estriol, the total signal was the sum of the binding signals from anti-estradiol and anti-estriol antibodies. In a further refinement, the individual antibodies were flowed through the flow cell sequentially, allowing the quantification of each binding signal within the combination. With this sequential format, measurement of the individual hormones in the range of 1.6 pM(-1) nM was shown. Furthermore, the same flow format was successfully applied to assay estriol and estradiol hormones in mixtures of six related compounds.
The effect of numerical aperture on signal level from fluorescent substances or solutions in the evanescent zone of a cylindrical waveguide is analyzed. The analysis applies to the case in which the fluorescence is excited by the evanescent wave of a fiber and the fluorescence signal is that which tunnels back into the same fiber. The analysis is for two cases: bulk fluorescence and fluorescence of a thin film layer. Experimental results are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.