An analysis is made of various quantification issues concerning the analysis of ultrathin layers of SiO• at position 'B' at 28.5• from the surface normal in the [110] azimuth, which is equivalently good but may degrade for spectrometers with high angular resolution. If the same equation is used for calculating the thickness, position B leads to a calculated thickness that is 4% less than that measured for an average orientation, whereas data acquired for normal emission lead to a value 18% lower, and those measured at A are 2% higher. Measurements of the carbonaceous contamination confirm earlier conclusions that the contamination is better described using data for an average polymer than for glassy carbon. Crown
The depth profiling of organic materials with argon cluster ion sputtering has recently become widely available with several manufacturers of surface analytical instrumentation producing sources suitable for surface analysis. In this work, we assess the performance of argon cluster sources in an interlaboratory study under the auspices of VAMAS (Versailles Project on Advanced Materials and Standards). The results are compared to a previous study that focused on C(60)(q+) cluster sources using similar reference materials. Four laboratories participated using time-of-flight secondary-ion mass spectrometry for analysis, three of them using argon cluster sputtering sources and one using a C(60)(+) cluster source. The samples used for the study were organic multilayer reference materials consisting of a ∼400-nm-thick Irganox 1010 matrix with ∼1 nm marker layers of Irganox 3114 at depths of ∼50, 100, 200, and 300 nm. In accordance with a previous report, argon cluster sputtering is shown to provide effectively constant sputtering yields through these reference materials. The work additionally demonstrates that molecular secondary ions may be used to monitor the depth profile and depth resolutions approaching a full width at half maximum (fwhm) of 5 nm can be achieved. The participants employed energies of 2.5 and 5 keV for the argon clusters, and both the sputtering yields and depth resolutions are similar to those extrapolated from C(60)(+) cluster sputtering data. In contrast to C(60)(+) cluster sputtering, however, a negligible variation in sputtering yield with depth was observed and the repeatability of the sputtering yields obtained by two participants was better than 1%. We observe that, with argon cluster sputtering, the position of the marker layers may change by up to 3 nm, depending on which secondary ion is used to monitor the material in these layers, which is an effect not previously visible with C(60)(+) cluster sputtering. We also note that electron irradiation, used for charge compensation, can induce molecular damage to areas of the reference samples well beyond the analyzed region that significantly affects molecular secondary-ion intensities in the initial stages of a depth profile in these materials.
The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials.
Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in the amount of thermal oxide on (100) and (111) orientation silicon wafer substrates in the thickness range 1.5-8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium -energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing -incidence x-ray reflectometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterized by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters.The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The data sets correlate with the NPL data with average root-mean-square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonaceous contamination equivalent to ∼1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X-ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. The XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2), deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. Crown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.