Recent clinical data indicate that the measurement of the concentration of C-reactive protein (CRP) requires a higher sensitivity and wider dynamic range than most of the current methods can offer. Our goal was to develop a totally automated and highly sensitive CRP assay with an extended range on the Dimension® clinical chemistry system based on particle-enhanced turbidimetric-immunoassay (PETIA) technology. The improved method was optimized and compared to the Binding Site's radial immunodiffusion assay using disease state specimens to minimize interference. Assay performance was assessed on the Dimension® system in a 12-instrument inter-laboratory comparison study. A split-sample comparison (n = 622) was performed between the improved CRP method on the Dimension® system and the N Latex CRP mono method on the Behring Nephelometer, using a number of reagent and calibrator lots on multiple instruments. The method was also referenced to the standard material, CRM470, provided by the International Federation of Clinical Chemistry (IFCC). The improved CRP method was linear to 265.1mg/l with a detection limit between 0.2 and 0.5mg/l. The method detects antigen excess from the upper assay limit to 2000mg/l, thereby allowing users to retest the sample with dilution. Calibration was stable for 60 days. The within-run reproducibility (CV) was less than 5.1% and total reproducibility ranged from 1.1 to 6.7% between 3.3 and 265.4mg/l CRP. Linear regression analysis of the results on the improved Dimension® method (DM) versus the Behring Nephelometer (BN) yielded the following equation: DM = 0.99 × BN − 0.37; r = 0.992. Minimal interference was observed from sera of patients with elevated IgM, IgG and IgA. The recovery of the IFCC standard was within 100 ± 7 % across multiple lots of reagent and calibrator. The improved CRP method provided a sensitive, accurate and rapid approach to quantify CRP in serum and plasma on the Dimension® clinical chemistry system. The ability to detect antigen excess eliminated reporting falsely low results caused by the ‘prozone effect’.
A fully automated, random access method for the determination of
cannabinoids (UTHC) was developed for the Dimension AR and XL clinical chemistry systems. The method utilizes Abuscreen ONLINE reagents and a multianalyte liquid calibrator containing 11-nor-Δ9-THC-9-carboxylic acid. Within-run and
total reproducibility, determined using NCCLS protocol EP5-
T2, was less than 0.6% and 1.6% CV, respectively, at all concentrations. Calibration stability was retained for at least 30 days. An extensive evaluation of non-structurally related drugs and various physiological substances indicated lack of interference in the method. No sample carry-over was observed following a
specimen containing 1886 ng/ml 11-nor-Δ9-THC-9-carboxylic
acid. A 99.1% agreement (N = 445 samples) was found between an EMIT based method on the aca discrete clinical analyser and the Dimension UTHC method.
Dimension clinical chemistry system and aca discrete clinical
analyser are registered trademarks of Dade International.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.