Summary1. Rapid environmental change is placing increasing pressure on the survival of many species globally. Ecological refuges can mitigate the impacts of change by facilitating the survival or persistence of organisms in the face of disturbance events that would otherwise lead to their mortality, displacement or extinction. Refuges may have a critical influence on the successional trajectory and resilience of ecosystems, yet their function remains poorly understood. 2. We review and describe the role of refuges in faunal conservation in the context of fire, a globally important disturbance process. 3. Refuges have three main functions in relation to fire: they enhance immediate survival during a fire event, facilitate the persistence of individuals and populations after fire and assist in the re-establishment of populations in the longer term. Refuges may be of natural or anthropogenic origin, and in each case, their creation can arise from deterministic or stochastic processes. The specific attributes of refuges that determine their value are poorly known, but include within-patch attributes relating to vegetation composition and structure; patchscale attributes associated with their size and shape; and the landscape context and spatial arrangement of the refuge in relation to fire patterns and land uses. 4. Synthesis and applications. Refuges are potentially of great importance in buffering the effects of wildfire on fauna. There is an urgent need for empirical data from a range of ecosystems to better understand what constitutes a refuge for different taxa, the spatial and temporal dynamics of species' use of refuges and the attributes that most influence their value to fauna. Complementary research is also required to evaluate threats to naturally occurring refuges and the potential for management actions to protect, create and enhance refuges. Knowledge of the spatial arrangement of refuges that enhance the persistence of fire-sensitive species will aid in making decisions concerning land and fire management in conservation reserves and large natural areas. Global change in the magnitude and extent of fire regimes means that refuges are likely to be increasingly important for the conservation of biodiversity in fire-prone environments.
Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.
Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire‐sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south‐eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under ‘severe’ fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under ‘moderate’ fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole‐facing aspects) and vegetation communities (i.e. closed‐forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long‐term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.