Lameness is a severe welfare problem and a production-limiting disease in dairy farming. The objectives of this study were to determine prevalence of lameness and investigate cow- and herd-level factors associated with lameness in dairy cows housed in freestall barns in 3 Canadian provinces. A purposive sample of 40 Holstein-Friesian cows was selected from each of 141 dairy farms in Québec, Ontario, and Alberta. In total, 5,637 cows were scored once for lameness (presence of limping when walking). Data collected included information on individual cows (hock lesions, claw length, body condition score, parity, days in milk, and milk production), management practices (floor and stall cleaning routine, bedding routine, and footbath practices), and facility design (stall dimensions, stall base and bedding type, width of feed alley, flooring type, and slipperiness) hypothesized to be risk factors for lameness. Multilevel mixed logistic regression models were constructed (including farm as a random effect and province as a fixed effect). Herd-level lameness prevalence ranged from 0 to 69% (mean = 21%). Lameness prevalence increased with increasing parity; compared with first parity, cows in parity 2, 3, and ≥ 4 had 1.6, 3.3, and 4 times, respectively, higher odds of being lame. Furthermore, the odds of lameness were 1.6 times greater in cows with low body condition score (≤ 2.5) than in cows with a higher body condition score. In addition, injured hocks and overgrown claws were associated with 1.4- and 1.7-fold increased odds of being lame, respectively, whereas every 1 kg increase in daily milk production was associated with a 3% decrease in the odds of being lame. Lameness prevalence was higher in herds with ≤ 100 cows, but lower in barns with a sand or dirt stall base, or with bedding ≥ 2 cm deep. Cows exposed to very slippery floors had 2 times the odds of being lame compared with cows exposed to nonslippery floors. We attributed the wide range of lameness prevalence to the great variability in facilities and management practices among farms. Finally, we inferred that the prevalence of lameness could be decreased by improving management of multiparous, thin, or injured cows and by adopting management practices intended to improve cow comfort, namely the floor's slip resistance and the stall's lying surface.
The objectives of this cross-sectional study were to determine the prevalence and distribution of foot lesions and associated cow- and herd-level risk factors in dairy cows in Alberta, Canada. Foot lesion data were recorded electronically by 7 hoof trimmers on 28,607 cows in 156 dairy farms from June 2009 to November 2012. Foot lesion prevalence estimates differed between farms that had the whole herd trimmed at once (≥80% of lactating cows were trimmed; n=69 farms and 8,020 cows) and farms on which part of the herd was trimmed (selection of cows was determined by farmer and <80% of lactating cows were trimmed; n=87 and 20,587 cows). Estimates were consistently higher for the latter likely because farmers presumably prioritized lame cows in partial-herd trims. On farms with whole-herd trims, digital dermatitis was the most common lesion among all housing types, present in 15% of cows and 94% of herds. Sole ulcers and white line disease were detected in 6 and 4% of the cows and 92 and 93% of herds, respectively. Other infectious and claw horn lesions each affected 1 to 2% of cows and 62 to 78% of herds. Intraclass correlation coefficients for hoof trimmers ranged from 0.01 to 0.20 for all lesions, indicating some clustering of recorded lesions by trimmer. Multilevel mixed logistic regression models were constructed (including hoof trimmer as fixed and farm as random effects) for the 3 most frequently identified lesions. Prevalence of digital dermatitis decreased with increasing parity, but this effect interacted with days in milk (DIM); primiparous cows had higher odds of digital dermatitis in mid lactation (100-199 DIM) and late lactation (≥200 DIM) compared with cows at other stages of lactation. In contrast, prevalence of sole ulcers and white line disease increased with increasing parity; compared with cows in parity 1, those in parity 4 had 5 or 7 times higher odds of having these lesions, respectively. Cows in mid lactation and late lactation had higher odds of sole ulcers and white line disease than cows at other stages of lactation, regardless of parity. Digital dermatitis prevalence was 2 times higher in herds housed in barns with access to an exercise area. The odds of sole ulcers and white line disease were ≥2 times higher in cows housed in freestalls than those housed in deep-bedded packs. Therefore, preventive measures for control of digital dermatitis merit emphasis, especially in primiparous cows and on farms with exercise areas. In addition, improving housing environment by providing a deep-bedded area for older cows in mid lactation or late lactation could reduce prevalence of claw horn lesions. We inferred that foot lesion data recorded by hoof trimmers can provide useful information not only to develop effective foot health programs at herd level, but also for disease surveillance and genetic improvement at regional and national levels.
Lying behavior is an important measure of comfort and well-being in dairy cattle, and changes in lying behavior are potential indicators and predictors of lameness. Our objectives were to determine individual and herd-level risk factors associated with measures of lying behavior, and to evaluate whether automated measures of lying behavior can be used to detect lameness. A purposive sample of 40 Holstein cows was selected from each of 141 dairy farms in Alberta, Ontario, and Québec. Lying behavior of 5,135 cows between 10 and 120 d in milk was automatically and continuously recorded using accelerometers over 4 d. Data on factors hypothesized to influence lying behavior were collected, including information on individual cows, management practices, and facility design. Associations between predictor variables and measures of lying behavior were assessed using generalized linear mixed models, including farm and province as random and fixed effects, respectively. Logistic regression models were used to determine whether lying behavior was associated with lameness. At the cow-level, daily lying time increased with increasing days in milk, but this effect interacted with parity; primiparous cows had more frequent but shorter lying bouts in early lactation, changing to mature-cow patterns of lying behavior (fewer and longer lying bouts) in late lactation. In barns with stall curbs >22 cm high, the use of sand or >2 cm of bedding was associated with an increased average daily lying time of 1.44 and 0.06 h/d, respectively. Feed alleys ≥ 350 cm wide or stalls ≥ 114 cm wide were associated with increased daily lying time of 0.39 and 0.33 h/d, respectively, whereas rubber flooring in the feed alley was associated with 0.47 h/d lower average lying time. Lame cows had longer lying times, with fewer, longer, and more variable duration of bouts compared with nonlame cows. In that regard, cows with lying time ≥ 14 h/d, ≤ 5 lying bouts per day, bout duration ≥ 110 min/bout, or standard deviations of bout duration over 4 d ≥ 70 min had 3.7, 1.7, 2.5, and 3.0 higher odds of being lame, respectively. Factors related to comfort of lying and standing surfaces significantly affected lying behavior. Finally, we inferred that automated measures of lying behavior could contribute to lameness detection, especially when interpreted in the context of other factors known to affect lying behavior, including those associated with the individual cow (e.g., parity and stage of lactation) or environment (e.g., stall surface).
The objectives were (1) to estimate the genetic parameters and breeding values of hoof lesions, (2) to estimate the phenotypic effect of each feet and legs conformation traits on hoof lesions, and (3) to estimate genetic correlations between hoof lesions with feet and legs conformation traits. The presence or absence of specific hoof lesions was recorded for each hoof. Lesions were classified into infectious (digital and interdigital dermatitis, foot rot, and heel erosion), horn (sole and toe ulcer, sole hemorrhage, and white line disease), and other lesions (interdigital hyperplasia, fissures, thin soles, and corkscrew claw). A total of 34,905 hoof health records from 27,179 cows and 365 herds, collected by 18 different hoof-trimmers in Ontario, Alberta, and British Columbia, were analyzed using linear animal models. In addition, 5 feet and leg conformation traits (foot angle, heel depth, bone quality, rear leg side view, and rear leg rear view) and locomotion from primiparous cows were considered (n=11,419 and 6,966 cows, for conformation traits and locomotion, respectively). At least one lesion was found in nearly 40% of the hoof trimming records. The heritability estimates for hoof lesions ranged from 0.01 for front horn lesions to 0.09 for rear infectious lesions. Despite the low heritability estimates, we observed large variability in sire estimated breeding value (EBV) for resistance to hoof lesions. Positive genetic correlations were found between the occurrence of front and rear infectious lesions (0.77) and between front and rear horn lesions (0.61), but not between infectious and horn lesions (0.08). For most of the conformation traits, low scores were phenotypically associated with higher incidence of horn lesions, whereas we found no evidence of a phenotypic effect of feet and leg traits on infectious lesions. The heritability of the conformation traits ranged from 0.04 for rear leg rear view to 0.22 for bone quality, whereas that for locomotion was 0.03. The genetic correlations between hoof lesions and conformation traits were low to moderate, yet most of the estimates were associated with high standard errors. In conclusion, although hoof lesions are lowly heritable traits, sufficient genetic variation exists (as evidenced by large variability in sire EBV) for genetic improvement through direct selection in the long term. Standardization of hoof health data collection is encouraged.
The Alberta Johne's Disease Initiative (AJDI) is a voluntary, management-based prevention and control program for Johne's disease (JD), a wasting disease in ruminants that causes substantial economic losses to the cattle industry. Despite extensive communication about the program's benefits and low cost to participating producers, approximately 35% of Alberta dairy farmers have not enrolled in the AJDI. Therefore, the objective was to identify differences between AJDI nonparticipants and participants that may influence enrollment. Standardized questionnaires were conducted in person on 163 farms not participating and 61 farms participating in the AJDI. Data collected included demographic characteristics, internal factors (e.g., attitudes and beliefs of the farmer toward JD and the AJDI), external factors (e.g., farmers' JD knowledge and on-farm goals and constraints), as well as farmers' use and influence of various information sources. Nonparticipants and participants differed in at least some aspects of all studied categories. Based on logistic regression, participating farms had larger herds, higher self-assessed knowledge of JD, better understanding of AJDI details before participation, and used their veterinarian more often to get information about new management practices and technologies when compared with nonparticipants. In contrast, nonparticipants indicated that time was a major on-farm constraint and that participation in the AJDI would take too much time. They also indicated that they preferred to wait and see how the program worked on other farms before they participated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.