Vagus nerve stimulation (VNS) is used as therapy for treatment-resistant depression or epilepsy. This study used immunohistochemistry for biomarkers of short-term (c-Fos) and long-term (DFosB) neuronal activation to map regions in brain that are activated by acute (2 h) or chronic (3 weeks) VNS in conscious Sprague-Dawley rats. Electrodes (Cyberonics Inc.) were implanted on the left vagus nerve and 1 week after surgery, stimulation began using parameters employed clinically (one burst of 20 Hz, 250 ms pulse width, 0.25 mA stimulation for 30 s every 5 min). Radio telemetry transmitters were used for monitoring blood pressure, heart rate, activity, and respiratory rate during VNS; neither acute nor chronic VNS significantly affected these parameters. Acute VNS significantly increased c-Fos staining in the nucleus of the solitary tract, paraventricular nucleus of the hypothalamus, parabrachial nucleus, ventral bed nucleus of the stria terminalis, and locus coeruleus but not in the cingulate cortex or dorsal raphe nucleus (DRN). Acute VNS did not affect DFosB staining in any region. Chronic VNS significantly increased DFosB and c-Fos staining bilaterally in each region affected by acute VNS as well as in the cingulate cortex and DRN. Using these stimulation parameters, VNS was tested for antidepressant-like activity using the forced swim test (FST). Both VNS and desipramine significantly decreased immobility in the FST; whereas desipramine decreased immobility by increasing climbing behavior, VNS did so by increasing swimming behavior. This study, then, identified potential sites in brain where VNS may produce its clinical effects.
Chronic intermittent hypoxia (CIH) models repetitive bouts of arterial hypoxemia that occur in humans suffering from obstructive sleep apnea. CIH has been linked to persistent activation of arterial chemoreceptors and the renin-angiotensin system, which have been linked to chronic elevations of sympathetic nerve activity (SNA) and mean arterial pressure (MAP). Because Fos and FosB are transcription factors involved in activator protein (AP)-1 driven central nervous system neuronal adaptations, this study determined if CIH causes increased Fos or FosB staining in brain regions that regulate SNA and autonomic function. Male Sprague Dawley rats were instrumented with telemetry transmitters for continuous recording of MAP and heart rate (HR). Rats were exposed to continuous normoxia (CON) or to CIH for 8 h/day for 7 days. CIH increased MAP by 7-10 mmHg without persistently affecting HR. A separate group of rats was killed 1 day after 7 days of CIH for immunohistochemistry. CIH did not increase Fos staining in any brain region examined. Staining for FosB/ΔFosB was increased in the organum vasculosum of the lamina terminalis (CON: 9 ± 1; CIH: 34 ± 3 cells/section), subfornical organ (CON: 7 ± 2; CIH: 31 ± 3), median preoptic nucleus (CON 15 ± 1; CIH: 38 ± 3), nucleus of the solitary tract (CON: 9 ± 2; CIH: 28 ± 4), A5 (CON: 3 ± 1; CIH: 10 ± 1), and rostral ventrolateral medulla (CON: 5 ± 1; CIH: 17 ± 2). In the paraventricular nucleus, FosB/ΔFosB staining was located mainly in the dorsal and medial parvocellular subnuclei. CIH did not increase FosB/ΔFosB staining in caudal ventrolateral medulla or supraoptic nucleus. These data indicate that CIH induces an increase in FosB/ΔFosB in autonomic nuclei and suggest that AP-1 transcriptional regulation may contribute to stable adaptive changes that support chronically elevated SNA.
The arterial chemoreceptors play an important role in the reflex regulation of blood pressure and respiration. To investigate the initial integration of chemoreceptor inputs within the central nervous system, intracellular recordings were obtained in pentobarbital-anesthetized, paralyzed, and mechanically ventilated cats, from 58 cells within the nucleus of the tractus solitarius (NTS) that were depolarized by activation of the ipsilateral carotid body chemoreceptors. Close arterial injection of less than 100 microliters CO2-saturated bicarbonate evoked depolarizations of membrane potential with amplitudes of 2.2-4.6 mV and durations of 1.8-6.7 s in 46 cells. In 12 cells, activation of the carotid body chemoreceptors evoked a depolarization-hyperpolarization sequence. Electrical stimulation of the carotid sinus nerve (500 microA, 0.2 ms) evoked EPSPs [mean latency 6.4 +/- 0.5 (SE) ms; range 2.1-18.4 ms] in 46 cells and EPSP-IPSPs (7.3 +/- 0.8 ms; range 4.2-12.4 ms) in 12 cells. The distribution of EPSP latencies exhibited two peaks, one in the 2- to 4-ms range and another in the 7- to 8-ms range. Twenty-nine chemoreceptive cells were tested for the presence of convergent inputs from the ipsilateral carotid sinus baroreceptors. No evidence was found of a convergent postsynaptic inhibitory input from the baroreceptors within the NTS; however, seven cells were found that received an excitatory input from the baroreceptors. The observation that NTS neurons do not integrate chemoreceptor afferent inputs in a homogeneous manner suggests that the multiplicity of NTS unit responses might be related to the specific reflex function of an individual cell (e.g., vagal or sympathetic outflow, respiration).(ABSTRACT TRUNCATED AT 250 WORDS)
1. In pentobarbitone-anaesthetized cats extracellular activity of neurones in the vicinity of the nucleus tractus solitarius receiving inputs from the carotid sinus nerve (SN) and/or vagus nerve (VN) during stimulation of the hypothalamic defence area (HDA) and application of gamma-aminobutyric acid (GABA) and glycine and their antagonists have been studied. 2. A total of forty neurones have been tested, of which twenty-four only had an input from the SN, one only from the VN, twelve from both nerves and three had neither SN or VN inputs. 3. Short trains of stimuli to the HDA inhibited both the ongoing activity (if present) and evoked discharge in thirty-nine of the forty neurones tested. 4. In the forty cells tested ionophoretic application of GABA reduced (4) or totally inhibited (35) neuronal discharge whilst in the thirty-eight tested with glycine discharge was totally (25) or partially (12) suppressed. 5. Ionophoresis of bicuculline totally (14) or partially (6) antagonized the inhibitory actions of GABA in the twenty-five cells tested, and in eighteen of these the ongoing and/or evoked activity was simultaneously increased. In eighteen of the nineteen cells tested this level of bicuculline also antagonized the inhibitory actions of HDA stimuli whereas in none of the sixteen cells tested did it affect glycine-evoked inhibitions. 6. Ionophoretic application of strychnine antagonized the inhibitory effects of glycine in eight of nine cells tested but in these eight cells strychnine had no effect on ongoing or evoked discharges, GABA- or HDA-evoked inhibitions. 7. In a chloralose-anaesthetized cat five neurones receiving SN inputs (three also receiving VN inputs) were recorded. All could be inhibited by HDA stimuli and by application of GABA. In the three of four cells in which bicuculline antagonized GABA inhibitions, the effects of HDA stimuli were simultaneously antagonized whereas glycine-evoked inhibitions were unaffected. 8. In two neurones, in addition to inhibiting neuronal discharge HDA stimulation also evoked activity in the cells. In a further four neurones similar excitatory responses were uncovered when the HDA inhibitory effects were antagonized by bicuculline. 9. The importance of these observations in cardiovascular control and in the functioning of the baroreceptor reflex is discussed.
3. The specificity of the HDA stimulation was investigated by generalized
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.