Background and Purpose-It has been proposed that the novel thrombolytic microplasmin may be useful in the treatment of ischemic stroke. In the present study the effects and safety profile of microplasmin were evaluated in 2 rabbit embolic stroke models that have been used successfully to develop tissue plasminogen activator (tPA) as the only Food and Drug Administration-approved treatment for stroke. The rabbit small clot embolic stroke model (RSCEM) and rabbit large clot embolic stroke model (RLCEM) were used to determine the potential neuroprotective properties and safety profile of microplasmin, respectively, after an embolic stroke. Methods-Rabbits were embolized by injecting small blood clots (RSCEM) or large blood clots (RLCEM) into the cerebral circulation. For the RSCEM, 126 rabbits were included, with behavioral analysis conducted 24 hours later, allowing for determination of the effective stroke dose (ES 50 ) or clot amount (milligrams) that produces severe neurological deficits in 50% of rabbits. For RLCEM safety study analysis, 47 rabbits were included, with postmortem analyses consisting of assessment of hemorrhage and infarct rate and size. In test animals microplasmin was infused intravenously 60 minutes after embolization, whereas control rabbits were given infusions of the saline/Plasma-Lyte vehicle with all assessments performed in a blinded fashion. Results-In the RSCEM, a drug is considered neuroprotective if it significantly increases the ES 50 compared with the vehicle-treated control group. The ES 50 of the vehicle-treated control group 24 hours after embolization was 1.36Ϯ0.42 mg (nϭ38). Microplasmin, infused starting 60 minutes after embolization, increased the ES 50 to 2.32Ϯ0.57 (nϭ21), 1.89Ϯ0.48 (nϭ21), 2.81Ϯ0.55 (nϭ22), and 1.89Ϯ0.28 mg (nϭ24) for the 1-, 2-, 4-, and 8-mg/kg doses, respectively. There was a statistically significant behavioral improvement in the 4-mg/kg dose arm (Pϭ0.040). The microplasmin dose of microplasmin that was statistically significant (4 mg/kg) was subsequently determined to be safe in the RLCEM because it did not increase the incidence of hemorrhages (56%) compared with vehicle-treated rabbits (63%), nor did it significantly alter hemorrhage volume, infarct rate, or infarct volume. Conclusions-The present study shows that microplasmin improves behavioral rating scores in the RSCEM when administered 60 minutes after embolization, at a dose that does not increase hemorrhages in the RLCEM. This is in contrast to tPA, which significantly enhances the hemorrhage rate in the RLCEM.
Purpose Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) activation in Schlemm's canal (SC) endothelium is required for the maintenance of IOP, making the angiopoietin/Tie2 pathway a target for new and potentially disease modifying glaucoma therapies. The goal of the present study was to examine the effects of a Tie2 activator, AKB-9778, on IOP and outflow function. Methods AKB-9778 effects on IOP was evaluated in humans, rabbits, and mice. Localization studies of vascular endothelial protein tyrosine phosphatase (VE-PTP), the target of AKB-9778 and a negative regulator of Tie2, were performed in human and mouse eyes. Mechanistic studies were carried out in mice, monitoring AKB-9778 effects on outflow facility, Tie2 phosphorylation, and filtration area of SC. Results AKB-9778 lowered IOP in patients treated subcutaneously for diabetic eye disease. In addition to efficacious, dose-dependent IOP lowering in rabbit eyes, topical ocular AKB-9778 increased Tie2 activation in SC endothelium, reduced IOP, and increased outflow facility in mouse eyes. VE-PTP was localized to SC endothelial cells in human and mouse eyes. Mechanistically, AKB-9778 increased the filtration area of SC for aqueous humor efflux in both wild type and in Tie2 +/− mice. Conclusions This is the first report of IOP lowering in humans with a Tie2 activator and functional demonstration of its action in remodeling SC to increase outflow facility and lower IOP in fully developed mice. Based on these studies, a phase II clinical trial is in progress to advance topical ocular AKB-9778 as a first in class, Tie2 activator for treatment for ocular hypertension and glaucoma.
Intravitreal injection of recombinant microplasmin in the rabbit induces no ERG or retinal ultrastructural abnormalities. Pharmacologic vitreolysis with this agent may be a useful adjunct to vitreous surgery and could be used to induce PVD without vitreous surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.