A one-time algorithmic adjustment of open-loop settings did not alter glucose control in a relatively short duration outpatient closed-loop study. The CLC system proved very robust and adaptable, with minimal (<2%) time spent in the hypoglycemic range in either arm.
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called “artificial pancreas,” modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient’s basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability.
OBJECTIVEArtificial pancreas (AP) systems are best positioned for optimal treatment of type 1 diabetes (T1D) and are currently being tested in outpatient clinical trials. Our consortium developed and tested a novel adaptive AP in an outpatient, single-arm, uncontrolled multicenter clinical trial lasting 12 weeks.RESEARCH DESIGN AND METHODSThirty adults with T1D completed a continuous glucose monitor (CGM)-augmented 1-week sensor-augmented pump (SAP) period. After the AP was started, basal insulin delivery settings used by the AP for initialization were adapted weekly, and carbohydrate ratios were adapted every 4 weeks by an algorithm running on a cloud-based server, with automatic data upload from devices. Adaptations were reviewed by expert study clinicians and patients. The primary end point was change in hemoglobin A1c (HbA1c). Outcomes are reported adhering to consensus recommendations on reporting of AP trials.RESULTSTwenty-nine patients completed the trial. HbA1c, 7.0 ± 0.8% at the start of AP use, improved to 6.7 ± 0.6% after 12 weeks (−0.3, 95% CI −0.5 to −0.2, P < 0.001). Compared with the SAP run-in, CGM time spent in the hypoglycemic range improved during the day from 5.0 to 1.9% (−3.1, 95% CI −4.1 to −2.1, P < 0.001) and overnight from 4.1 to 1.1% (−3.1, 95% CI −4.2 to −1.9, P < 0.001). Whereas carbohydrate ratios were adapted to a larger extent initially with minimal changes thereafter, basal insulin was adapted throughout. Approximately 10% of adaptation recommendations were manually overridden. There were no protocol-related serious adverse events.CONCLUSIONSUse of our novel adaptive AP yielded significant reductions in HbA1c and hypoglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.