A specific memory is thought to be encoded by a sparse population of neurons1,2. These neurons can be tagged during learning for subsequent identification3 and manipulation4,5,6. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, a critical question of sufficiency remains: can one elicit the behavioral output of a specific memory by directly activating a population of neurons that was active during learning? Here we show that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behavior. We labeled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2)7,8 and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear conditioned mice with cells labeled by EYFP instead of ChR2. Finally, activation of cells labeled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context-specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.
Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.
The idea that memory is stored in the brain as physical alterations goes back at least as far as Plato, but further conceptualization of this idea had to wait until the 20(th) century when two guiding theories were presented: the "engram theory" of Richard Semon and Donald Hebb's "synaptic plasticity theory." While a large number of studies have been conducted since, each supporting some aspect of each of these theories, until recently integrative evidence for the existence of engram cells and circuits as defined by the theories was lacking. In the past few years, the combination of transgenics, optogenetics, and other technologies has allowed neuroscientists to begin identifying memory engram cells by detecting specific populations of cells activated during specific learning epochs and by engineering them not only to evoke recall of the original memory, but also to alter the content of the memory.
The valence of memories is malleable because of their intrinsic reconstructive property1. This property of memory has been used clinically to treat maladaptive behaviours2. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here, we investigated these mechanisms by applying the recently developed memory engram cell-labelling and -manipulation technique 3,4. We labelled, with Channelrhodopsin-2 (ChR2), a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that while the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new US of an opposite valence. Our present work provides new insight into the functional neural circuit underlying the malleability of emotional memory.
Stress is considered a potent environmental risk factor for many behavioral abnormalities, including anxiety and mood disorders 1,2 . Animal models can exhibit limited but quantifiable behavioral impairments resulting from chronic stress, including deficits in motivation, abnormal responses to behavioral challenges, and anhedonia 3-5 . The hippocampus is thought to negatively regulate the stress response and to mediate various cognitive and mnemonic aspects of stressinduced impairments 2,3,5 , though the neuronal underpinnings sufficient to support behavioral improvements are largely unknown. Here, we acutely rescue stress-induced, depression-related behaviors by optogenetically reactivating DG cells that were previously active during a positive experience. A brain-wide histological investigation, coupled with pharmacological and projectionspecific optogenetic blockade experiments, identified glutamatergic activity in the hippocampusamygdala-nucleus accumbens pathway as a candidate circuit supporting the acute rescue. Finally, chronically reactivating hippocampal cells associated with a positive memory resulted in a rescue of stress-induced behavioral impairments and neurogenesis at time points beyond the light stimulation. Together, our data suggest that activating positive memories artificially is sufficient to suppress depression-like behaviors and point to DG engram cells as potential therapeutic nodes for intervening with maladaptive behavioral states.Our recent studies have demonstrated that DG cells that express c-Fos during fear or reward conditioning define an active neural population that is sufficient to elicit both aversive and Reprints and permissions information is available at www.nature.com/reprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.