The Montreal Protocol on Substances that Deplete the Ozone Layer has been hailed as the most successful environmental treaty ever ( https://www.unenvironment.org/news-and-stories/story/montreal-protocol-triumph-treaty ). Yet, although our main concern about ozone depletion is the subsequent increase in harmful solar UV radiation at the Earth’s surface, no studies to date have demonstrated its effectiveness in that regard. Here we use long-term UV Index (UVI) data derived from high-quality UV spectroradiometer measurements to demonstrate its success in curbing increases in UV radiation. Without this landmark agreement, UVI values would have increased at mid-latitude locations by approximately 20% between the early 1990s and today and would approximately quadruple at mid-latitudes by 2100. In contrast, an analysis of UVI data from multiple clean-air sites shows that maximum daily UVI values have remained essentially constant over the last ~20 years in all seasons, and may even have decreased slightly in the southern hemisphere, especially in Antarctica, where effects of ozone depletion were larger. Reconstructions of the UVI from total ozone data show evidence of increasing UVI levels in the 1980s, but unfortunately, there are no high-quality UV measurements available prior to the early 1990s to confirm these increases with direct observations.
Toxic nitrogen oxides produced by high temperature combustion are prevalent in urban environments, contributing to a significant health burden. Nitrogen oxides such as NO 2 and HONO in pollution are important for hydroxyl radical (OH) production and overall oxidative capacity in urban environments; however, current mechanisms cannot explain high daytime levels of HONO observed in many urban and rural locations around the world. Here we present HONO, NO 2 and aerosol extinction vertical distributions retrieved from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in suburban Melbourne, which are the first MAX-DOAS results from the Australian continent. Using the optimal estimation algorithm HEIPRO we show that vertical profiles for NO 2 and HONO can be calculated with a low dependence on the retrieval forward model and a priori parameters, despite a lack of independent co-located aerosol or trace gas measurements. Between December 2016 and April 2017 average peak NO 2 values of 8 ± 2 ppb indicated moderate traffic pollution levels, and high daytime peak values of HONO were frequently detected, averaging 220 ± 30 ppt in the middle of the day. HONO levels measured in Melbourne were typically lower than those recorded in the morning in other places around the world, indicating minimal overnight accumulation, but peaked in the middle of the day to be commensurate with midday concentrations in locations with much higher NO 2 pollution. Regular midday peaks in the diurnal cycle of HONO surface concentrations have only previously been reported in rural locations. The HONO measured implies a daytime source term 1 ppb h −1 above the predicted photostationary state (PSS) concentration and represents an OH radical source up to 4 times stronger than from ozone photolysis alone in the lowest 500 m of the troposphere. The dependence of the high midday HONO levels on soil moisture, combined with the observed diurnal and vertical profiles, provides evidence for a strong photoactivated and groundbased daytime HONO source.
Abstract. The standard Dobson Umkehr methodology to retrieve coarse-resolution ozone profiles used by the National Oceanographic and Atmospheric Administration uses designated solar zenith angles (SZAs). However, some information may be lost if measurements lie outside the designated SZA range (between 60 • and 90 • ), or do not conform to the fitting technique. Also, while Umkehr measurements can be taken using multiple wavelength pairs (A, C and D), past retrieval methods have focused on a single pair (C). Here we present an Umkehr inversion method that uses measurements at all SZAs (termed operational) and all wavelength pairs. (Although, we caution direct comparison to other algorithms.)Information content for a Melbourne, Australia (38 • S, 145 • E) Umkehr measurement case study from 28 January 1994, with SZA range similar to that designated in previous algorithms is shown. When comparing the typical single wavelength pair with designated SZAs to the operational measurements, the total degrees of freedom (independent pieces of information) increases from 3.1 to 3.4, with the majority of the information gain originating from Umkehr layers 2 + 3 and 4 (10-20 km and 25-30 km respectively). In addition to this, using all available wavelength pairs increases the total degrees of freedom to 5.2, with the most significant increases in Umkehr layers 2 + 3 to 7 and 9+ (10-40 and 45-80 km). Investigating a case from 13 April 1970 where the measurements extend beyond the 90 • SZA range gives further information gain, with total degrees of freedom extending to 6.5. Similar increases are seen in the information content. Comparing the retrieved Melbourne Umkehr time series with ozonesondes shows excellent agreement in layers 2 + 3 and 4 (10-20 and 25-30 km) for both C and A + C + D-pairs. Retrievals in layers 5 and 6 (25-30 and 30-35 km) consistently show lower ozone partial column compared to ozonesondes. This is likely due to stray light effects that are not accounted for in the forward model, and under represented stratospheric aerosol.
Abstract. South-eastern Australia has been identified by modelling studies as a hotspot of biogenic volatile organic compound (VOC) emissions; however, long-term observational VOC studies are lacking in this region. Here, 2.5 years of multi-axis differential optical absorption spectroscopy (MAX-DOAS) formaldehyde (HCHO) measurements in Australasia are presented, from Broadmeadows, in northern Melbourne, Australia, and from Lauder, a rural site in the South Island of New Zealand. Across the measurement period from December 2016 to November 2019, the mean formaldehyde columns measured by the MAX-DOAS were 2.50±0.61×1015 molec. cm−2 at Lauder and 5.40±1.59×1015 molec. cm−2 at Broadmeadows. In both locations, the seasonal cycle showed a pronounced peak in Austral summer (December–January–February) consistent with temperature-dependent formaldehyde production from biogenic precursor gases. The amplitude of the seasonal cycle was 0.7×1015 molec. cm−2 at Lauder, and it was 2.0×1015 molec. cm−2 at Broadmeadows. The Lauder MAX-DOAS HCHO measurements are compared with 27 months of co-located Fourier transform infrared (FTIR) observations. The seasonal variation of Lauder MAX-DOAS HCHO, smoothed by the FTIR averaging kernels, showed good agreement with the FTIR measurements, with a linear regression slope of 1.03 and an R2 of 0.66 for monthly averaged formaldehyde partial columns (0–4 km). In addition to ground-based observations, a clear way to address the VOC measurement gap in areas such as Australasia is with satellite measurements. Here, we demonstrate that the TROPOspheric Monitoring Instrument (TROPOMI) can be used to distinguish formaldehyde hotspots in forested and agricultural regions of south-eastern Australia. The MAX-DOAS measurements are also compared to TROPOMI HCHO vertical columns at Lauder and Melbourne; very strong monthly average agreement is found for Melbourne (regression slope of 0.61 and R2 of 0.95) and a strong agreement is found at Lauder (regression slope of 0.73 and R2 of 0.61) for MAX-DOAS vs. TROPOMI between May 2018 and November 2019. This study, the first long-term satellite comparison study using MAX-DOAS in the Southern Hemisphere, highlights the improvement offered by TROPOMI's high resolution over previous satellite products and provides the groundwork for future studies using ground-based and satellite DOAS for studying VOCs in Australasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.