It has become evident that fluorinated compounds have a remarkable record in medicinal chemistry and will play a continuing role in providing lead compounds for therapeutic applications. This tutorial review provides a sampling of renowned fluorinated drugs and their mode of action with a discussion clarifying the role and impact of fluorine substitution on drug potency.
Idiosyncratic adverse drug reactions (IADRs) in humans can result in a broad range of clinically significant toxicities leading to attrition during drug development as well as postlicensing withdrawal or labeling. IADRs arise from both drug and patient related mechanisms and risk factors. Drug related risk factors, resulting from parent compound or metabolites, may involve multiple contributory mechanisms including organelle toxicity, effects related to compound disposition, and/or immune activation. In the current study, we evaluate an in vitro approach, which explored both cellular effects and covalent binding (CVB) to assess IADR risks for drug candidates using 36 drugs which caused different patterns and severities of IADRs in humans. The cellular effects were tested in an in vitro Panel of five assays which quantified (1) toxicity to THLE cells (SV40 T-antigen-immortalized human liver epithelial cells), which do not express P450s, (2) toxicity to a THLE cell line which selectively expresses P450 3A4, (3) cytotoxicity in HepG2 cells in glucose and galactose media, which is indicative of mitochondrial injury, (4) inhibition of the human bile salt export pump, BSEP, and (5) inhibition of the rat multidrug resistance associated protein 2, Mrp2. In addition, the CVB Burden was estimated by determining the CVB of radiolabeled compound to human hepatocytes and factoring in both the maximum prescribed daily dose and the fraction of metabolism leading to CVB. Combining the aggregated results from the in vitro Panel assays with the CVB Burden data discriminated, with high specificity (78%) and sensitivity (100%), between 27 drugs, which had severe or marked IADR concern, and 9 drugs, which had low IADR concern, we propose that this integrated approach has the potential to enable selection of drug candidates with reduced propensity to cause IADRs in humans.
A novel series of second generation DPP1 inhibitors free from aorta binding liabilities found for earlier compound series was discovered. This work culminated in the identification of compound 30 (AZD7986) as a highly potent, reversible, and selective clinical candidate for COPD, with predicted human PK properties suitable for once daily human dosing.
The RAS/MAPK pathway is a major driver of oncogenesis
and is dysregulated
in approximately 30% of human cancers, primarily by mutations in the
BRAF or RAS genes. The extracellular-signal-regulated kinases (ERK1
and ERK2) serve as central nodes within this pathway. The feasibility
of targeting the RAS/MAPK pathway has been demonstrated by the clinical
responses observed through the use of BRAF and MEK inhibitors in BRAF
V600E/K metastatic melanoma; however, resistance frequently develops.
Importantly, ERK1/2 inhibition may have clinical utility in overcoming
acquired resistance to RAF and MEK inhibitors, where RAS/MAPK pathway
reactivation has occurred, such as relapsed BRAF V600E/K melanoma.
We describe our structure-based design approach leading to the discovery
of AZD0364, a potent and selective inhibitor of ERK1 and ERK2. AZD0364
exhibits high cellular potency (IC50 = 6 nM) as well as
excellent physicochemical and absorption, distribution, metabolism,
and excretion (ADME) properties and has demonstrated encouraging antitumor
activity in preclinical models.
There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4. To guide and inform the evolution of this series, inhibitor binding mode information from X-ray crystal structures was critical in the rapid exploration of this template to compound 35, which was active when tested in in vivo antitumor efficacy experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.