In this paper we focus on the supervisory control problem of a parallel hybrid electric vehicle (HEV): minimize fuel consumption while ensuring self-sustaining State-of-Charge (SoC). We reapply the state of the art methodology by comparing optimal results of Dynamic Programming (DP) against a realtime control candidate. After careful selection, we opted for an Equivalent Consumption Minimization Strategy (ECMS) based approach for the following reasons: (i) results are quite remarkable with less than 5% fuel usage increase when compared to DP; (ii) simple and intuitive tuning of control parameters; (iii) readily usable for code generation (prototyping).Topics that distinguish this article from others in the literature include: (i) the usage of trapezoidal rule of integration implementing DP and ECMS; consequently, the offline simulation results are intended to be more precise and representative when compared against the more common, often used rectangular rule; (ii) a particular post-processing procedure of the recorded driving cycle data based on physical interpretation; it allows consistent offline simulations with quite high sampling period (in the order of seconds); (iii) tuning of control parameters in such a way that control system is robust towards new, unknown, unpredictable but closely resembling driving cycles.In particular, we focus on the supervisory control of a forklift truck. The real-time control is able to compute: (i) the power split (i.e. a balanced usage between an internal combustion engine and a supercapacitor); (ii) the drivetrain control (i.e. automatic gear shifting and clutching). Numerous numerical implementation issues are discussed along our presentation.
The aim of this work was to study the diffraction effects in the ultrasonic field of piston source transducers and their importance for accurate measurements of attenuation and dispersion in viscoelastic materials. In laboratory measurements, the diffraction phenomena are mainly due to the beam spread of the ultrasonic wave propagating in viscoelastic materials. This effect is essentially related to the estimated attenuation and dispersion in the material. In this work, a frequency domain system identification approach, using the maximum likelihood estimator (MLE), was applied to the measured data in order to determine a function for correcting the diffraction losses in both normal and oblique incidences for a large frequency band (300 kHz to 3 MHz). The effective radius of the used transmitter was determined by the inverse problem when ultrasonic beam propagation was investigated in a water medium. Using the estimated radius, the propagation through viscoelastic materials was established, and the acoustic parameters of these materials were estimated. Attention was paid to the determination of the attenuation and dispersion in the materials. These quantities were compared to those obtained without diffraction correction in order to see the influence of introducing the diffraction correction into the propagation model.
I. ABSTRACTThere is a growing need for measuring the large signal (non-linear) behavior of devices in their non-linear regions under excitation of complex modulated signal schemes, as commonly used in telecom applications. The large-signal network analyzer (LSNA) [ 11 developed by Agilent Technologies-NMDG is able to measure incident and scattered traveling voltage waves (or voltages and currents) appearing at both signal ports (input and output) of a DUT under periodical excitations or periodically modulated excitations. Since phase relations between the fundamental and higher harmonics are included in the measured signals, the complete behavior of the DUT is measured and accurate models to predict the DUT-behavior can now be extracted out of the measured data [2]. In this paper, some solutions to carry out the LSNA calibration for broadband modulated multitone signals and some observations aiming at high-power applications related to the controllable step-attenuators in the measurement channels are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.