Malaria Eradication Scientific Alliance (MESA) and US Centers for Disease Control and Prevention (CDC).
BackgroundIntra-rectal artesunate has been developed as a potentially life-saving treatment of severe malaria in rural village settings where administration of parenteral antimalarial drugs is not possible. We studied the population pharmacokinetics of intra-rectal artesunate and the relationship with parasitological responses in patients with moderately severe falciparum malaria.Methods and FindingsAdults and children in Africa and Southeast Asia with moderately severe malaria were recruited in two Phase II studies (12 adults from Southeast Asia and 11 children from Africa) with intensive sampling protocols, and three Phase III studies (44 children from Southeast Asia, and 86 children and 26 adults from Africa) with sparse sampling. All patients received 10 mg/kg artesunate as a single intra-rectal dose of suppositories. Venous blood samples were taken during a period of 24 h following dosing. Plasma artesunate and dihydroartemisinin (DHA, the main biologically active metabolite) concentrations were measured by high-performance liquid chromatography with electrochemical detection. The pharmacokinetic properties of DHA were determined using nonlinear mixed-effects modelling. Artesunate is rapidly hydrolysed in vivo to DHA, and this contributes the majority of antimalarial activity. For DHA, a one-compartment model assuming complete conversion from artesunate and first-order appearance and elimination kinetics gave the best fit to the data. The mean population estimate of apparent clearance (CL/F) was 2.64 (l/kg/h) with 66% inter-individual variability. The apparent volume of distribution (V/F) was 2.75 (l/kg) with 96% inter-individual variability. The estimated DHA population mean elimination half-life was 43 min. Gender was associated with increased mean CL/F by 1.14 (95% CI: 0.36–1.92) (l/kg/h) for a male compared with a female, and weight was positively associated with V/F. Larger V/Fs were observed for the patients requiring early rescue treatment compared with the remainder, independent of any confounders. No associations between the parasitological responses and the posterior individual estimates of V/F, CL/F, and AUC0–6h were observed.ConclusionsThe pharmacokinetic properties of DHA were affected only by gender and body weight. Patients with the lowest area under the DHA concentration curve did not have slower parasite clearance, suggesting that rectal artesunate is well absorbed in most patients with moderately severe malaria. However, a number of modelling assumptions were required due to the large intra- and inter-individual variability of the DHA concentrations.
Resistance to drugs can result from changes in drug transport, and this resistance can sometimes be overcome by a second drug that modifies the transport mechanisms of the cell. This strategy has been exploited to partly reverse resistance to chloroquine in Plasmodium falciparum. Studies with human tumor cells have shown that probenecid can reverse resistance to the antifolate methotrexate, but the potential for reversal of antifolate resistance has not been studied in P. falciparum. In the present study we tested the ability of probenecid to reverse antifolate resistance in P. falciparum in vitro. Probenecid, at concentrations that had no effect on parasite viability alone (50 M), was shown to increase the sensitivity of a highly resistant parasite isolate to the antifolates pyrimethamine, sulfadoxine, chlorcycloguanil, and dapsone by seven-, five-, three-, and threefold, respectively. The equivalent effects against an antifolate-sensitive isolate were activity enhancements of approximately 3-, 6-, 1.2-, and 19-fold, respectively. Probenecid decreased the level of uptake of radiolabeled folic acid, suggesting a transport-based mechanism linked to folate salvage. When probenecid was tested with chloroquine, it chemosensitized the resistant isolate to chloroquine (i.e., enhanced the activity of chloroquine). This enhancement of activity was associated with increased levels of chloroquine accumulation. In conclusion, we have shown that probenecid can chemosensitize malaria parasites to antifolate compounds via a mechanism linked to reduced folate uptake. Notably, this effect is observed in both folate-sensitive and -resistant parasites. In contrast to the activities of antifolate compounds, the effect of probenecid on chloroquine sensitivity was selective for chloroquine-resistant parasites (patent P407595GB [W. P. Thompson & Co., Liverpool, United Kingdom] has been filed to protect this intellectual property).
BackgroundInnovative approaches are needed to complement existing tools for malaria elimination. Ivermectin is a broad spectrum antiparasitic endectocide clinically used for onchocerciasis and lymphatic filariasis control at single doses of 150 to 200 mcg/kg. It also shortens the lifespan of mosquitoes that feed on individuals recently treated with ivermectin. However, the effect after a 150 to 200 mcg/kg oral dose is short-lived (6 to 11 days). Modeling suggests higher doses, which prolong the mosquitocidal effects, are needed to make a significant contribution to malaria elimination. Ivermectin has a wide therapeutic index and previous studies have shown doses up to 2000 mcg/kg (ie, 10 times the US Food and Drug Administration approved dose) are well tolerated and safe; the highest dose used for onchocerciasis is a single dose of 800 mcg/kg.ObjectiveThe aim of this study is to determine the safety, tolerability, and efficacy of ivermectin doses of 0, 300, and 600 mcg/kg/day for 3 days, when provided with a standard 3-day course of the antimalarial dihydroartemisinin-piperaquine (DP), on mosquito survival.MethodsThis is a double-blind, randomized, placebo-controlled, parallel-group, 3-arm, dose-finding trial in adults with uncomplicated malaria. Monte Carlo simulations based on pharmacokinetic modeling were performed to determine the optimum dosing regimens to be tested. Modeling showed that a 3-day regimen of 600 mcg/kg/day achieved similar median (5 to 95 percentiles) maximum drug concentrations (Cmax) of ivermectin to a single of dose of 800 mcg/kg, while increasing the median time above the lethal concentration 50% (LC50, 16 ng/mL) from 1.9 days (1.0 to 5.7) to 6.8 (3.8 to 13.4) days. The 300 mcg/kg/day dose was chosen at 50% of the higher dose to allow evaluation of the dose response. Mosquito survival will be assessed daily up to 28 days in laboratory-reared Anopheles gambiae s.s. populations fed on patients’ blood taken at days 0, 2 (Cmax), 7 (primary outcome), 10, 14, 21, and 28 after the start of treatment. Safety outcomes include QT-prolongation and mydriasis. The trial will be conducted in 6 health facilities in western Kenya and requires a sample size of 141 participants (47 per arm). Sub-studies include (1) rich pharmacokinetics and (2) direct skin versus membrane feeding assays.ResultsRecruitment started July 20, 2015. Data collection was completed July 2, 2016. Unblinding and analysis will commence once the database has been completed, cleaned, and locked.ConclusionsHigh-dose ivermectin, if found to be safe and well tolerated, might offer a promising new tool for malaria elimination.
1 The pharmacokinetics of rac-primaquine (45 mg base) and its principal plasma metabolite, carboxyprimaquine have been investigated in healthy Thai adults prior to and following a single oral dose of mefloquine (10 mg kg-').
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.