Using an NMR-based screen, a novel class of urokinase inhibitors were identified that contain a 2-aminobenzimidazole moiety. The inhibitory potency of this family of inhibitors is similar to that of inhibitors containing a guanidine or amidine group. However, unlike previously described guanidino- or amidino-based inhibitors which have pK(a) values greater than 9.0, urokinase inhibitors containing a 2-aminobenzimidazole have pK(a) values of 7.5. Thus, 2-aminobenzimidazoles may have improved pharmacokinetic properties which could increase the bioavailability of inhibitors which contain this moiety. A crystal structure of one of the lead inhibitors, 2-amino-5-hydroxybenzimidazole, complexed with urokinase reveals the electrostatic and hydrophobic interactions that stabilize complex formation and suggests nearby subsites that may be accessed to increase the potency of this new series of urokinase inhibitors.
Mineralocorticoid receptor (MR) blockade has come into focus as a promising approach for the treatment of cardiovascular diseases such as hypertension and congestive heart failure. In order to identify a novel class of nonsteroidal MR antagonists that exhibit significant potency and good selectivity over other steroidal hormone receptors, we designed a novel series of benzoxazin-3-one derivatives and synthesized them from 6-(7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-2H-1,4-benzoxazin-3(4H)-one (1a), high-throughput screening (HTS) hit compound. Our design was based on a crystal structure of an MR/compound complex and a docking model. In the course of lead generation from 1a, a 1,2-diaryl framework was characterized as a key structure with high binding affinity. On the basis of scaffold hopping and optimization studies, benzoxazin-3-one derivatives possessing 1-phenyl-3-trifluoromethylpyrazol-5-yl moiety at the 6-position were identified as a novel series of potent and selective MR antagonists. Among these compounds, 6-[1-(4-fluoro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]-2H-1,4-benzoxazin-3(4H)-one (14n) showed highly potent activity and good selectivity and also exhibited a significant antihypertensive effect in deoxycorticosterone acetate-salt hypertensive rats. On the basis of these results, compound 14n was progressed for further pharmacological evaluation.
We have discovered a novel class of endothelin (ET) receptor antagonists through pharmacophore analysis of the existing non-peptide ET antagonists. On the basis of this analysis, we determined that a pyrrolidine ring might replace the indian ring in SB 209670. The resultant compounds were readily prepared and amenable to extensive SAR studies. Thus a series of N-substituted trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrroli din e-3- carboxylic acids (8) have been synthesized and evaluated for binding at ET(A) and ET(B) receptors. Compounds with N-acyl and simple N-alkyl substituents had weak activity. Compounds with N-alkyl substituents containing ethers, sulfoxides, or sulfones showed increased activity. Much improved activity resulted from compounds where the N-substituents were acetamides. Compound 17u (A-127722) with the N,N-dibutylacetamide substituent is the best of the series. It has an IC(50)=0.36 nM for inhibition of ET-1 radioligand binding at the ET(A) receptor, with a 1000-fold selectivity for the ET(A) vs the ET(B) receptor. It is also a potent inhibitor (IC(50)=0.16 nM) of phosphoinositol hydrolysis stimulated by ET-1, and it antagonized the ET-1-induced contraction of the rabbit aorta with a pA(2)=9.20. The compound has 70% oral bioavailability in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.