This study compares the frequency response characteristics of catheter-mounted piezoelectric sound transducers with micromanometric transducers. The tip of a 8F catheter with two piezoelectric transducers and two micromanometers was inserted into a water-filled chamber that had a speaker fixed at one end. The speaker was driven by a power amplifier and sine wave generator. The outputs of the transducers were connected to a low-level amplifier. The piezoelectric transducer behaved as a tunable high-pass filter that could be modified by altering the input impedance of the low level amplifier; the frequency response characteristics were examined at five input impedances ranging from 0.96 to 11.8 megohms. The peak-to-peak outputs of the piezoelectric and pressure transducers were recorded at frequency ranges from DC to 1 kHz with a wide-band oscilloscope. The ratio of the outputs from the piezotransducer and micromanometer (Vph/Vpr) was plotted vs. frequency for each input impedance and analyzed to determine the piezotransducer's output resistance and equivalent capacitance; roll-off frequencies were then calculated. The equivalent capacitance of the piezo-element was determined to be 500-700 picofarads. Series capacitance acted with network resistance to produce a predictable frequency-dependent change in signal amplitude and phase angle. The inherent noise of the pressure transducer was found to be approximately 0.2 mm Hg, while the noise of the piezoelectric transducer was immeasurably low. The piezoelectric phonotransducers were superior to micromanometer transducers in their higher gain and lower noise, suggesting that these transducers may prove useful to physiologic and clinical studies for measuring intravascular sound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.