Erythropoietin receptor (EPOR) is thought to be activated by ligand-induced homodimerization. However, structures of agonist and antagonist peptide complexes of EPOR, as well as an EPO-EPOR complex, have shown that the actual dimer configuration is critical for the biological response and signal efficiency. The crystal structure of the extracellular domain of EPOR in its unliganded form at 2.4 angstrom resolution has revealed a dimer in which the individual membrane-spanning and intracellular domains would be too far apart to permit phosphorylation by JAK2. This unliganded EPOR dimer is formed from self-association of the same key binding site residues that interact with EPO-mimetic peptide and EPO ligands. This model for a preformed dimer on the cell surface provides insights into the organization, activation, and plasticity of recognition of hematopoietic cell surface receptors.
The functional mimicry of a protein by an unrelated small molecule has been a formidable challenge. Now, however, the biological activity of a 166-residue hematopoietic growth hormone, erythropoietin (EPO), with its class 1 cytokine receptor has been mimicked by a 20-residue cyclic peptide unrelated in sequence to the natural ligand. The crystal structure at 2.8 A resolution of a complex of this agonist peptide with the extracellular domain of EPO receptor reveals that a peptide dimer induces an almost perfect twofold dimerization of the receptor. The dimer assembly differs from that of the human growth hormone (hGH) receptor complex and suggests that more than one mode of dimerization may be able to induce signal transduction and cell proliferation. The EPO receptor binding site, defined by peptide interaction, corresponds to the smaller functional epitope identified for hGH receptor. Similarly, the EPO mimetic peptide ligand can be considered as a minimal hormone, and suggests the design of nonpeptidic small molecule mimetics for EPO and other cytokines may indeed be achievable.
RO4929097 was well tolerated at 270 mg on schedule A and at 135 mg on schedule B; the safety of schedule C has not been fully evaluated. Further studies are warranted on the basis of a favorable safety profile and preliminary evidence of clinical antitumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.